Science of Learning Strategy Series: Article 2, Retrieval Practice

Thomas J. Van Hoof, MD, EdD; Christopher R. Madan, PhD; Megan A. Sumeracki, PhD

Abstract: Retrieval practice is an evidence-based, science of learning strategy that is relevant to the planning and implementation of continuing professional development (CPD). Retrieval practice requires one to examine long-term memory to work with priority information again in working memory. Retrieval practice improves learning in two ways. It improves memory for the information itself (direct benefit), and retrieval practice provides feedback about what needs additional effort (indirect). Both benefits contribute significantly to durable learning. Research from cognitive psychology and neuroscience provides the rationale for retrieval practice, and examples of its implementation in health professions education are increasingly available in the literature. Through appropriate utilization, CPD participants can benefit from retrieval practice by making more-informed educational choices, and CPD planners can benefit in efforts to improve educational activities.

Keywords: science of learning, retrieval practice, practice testing, test-enhanced learning, self-testing, continuing education, continuing professional development

DOI: 10.1097/CEH.0000000000000335

ABOUT THE SCIENCE OF LEARNING STRATEGY SERIES

Consistent with a recent Journal of Continuing Education in the Health Professions’ editorial by Kitto about informing the continuing professional development (CPD) imagination,1 the emerging and interdisciplinary field of the science of learning (learning science), which concerns itself with how the brain learns and remembers important information, is a compelling but relatively unfamiliar field that stands to inspire CPD participants and planners to think about educational interventions differently. Moreover, learning science has compiled evidence in support of a set of strategies2–4 that can help CPD more effectively influence clinician knowledge, skill, attitude, competence, and even performance. The purpose of the series is to bring attention to evidence-based, learning-science strategies and to provide some background that might be helpful to CPD stakeholders considering the strategies. The first series’ article on “distributed practice” focused on when one schedules learning sessions, which should be spread out to allow participants more time and more opportunities to process important information.5 Here in this second article, the authors focus on how one spends time while learning by providing an overview of “retrieval practice.” Retrieval practice is known by many terms, such as “practice testing,” “test-enhanced learning,” and “self-testing,” and by its benefits, the “testing effect.”

THE ESSENCE OF RETRIEVAL PRACTICE

The essence of retrieval practice is bringing to mind (eg, as one would during a test) previously studied information. Although one can certainly learn from “high-stakes” tests (eg, licensing examinations) used for summative or judgment purposes, retrieval practice typically refers to “no-stakes” or “low-stakes” tests used for formative or improvement purposes.6 Examples of no-stakes retrieval practice include activities such as quizzing oneself with flashcards, completing problems or questions at the end of a chapter, and taking old examinations.7 An example of low-stakes retrieval practice might be a quiz that counts for a small number of points or as extra-credit. What seems to be key to testing’s benefits is the extent to which it requires additional processing of important information, elaboration of the memory, and thinking back to the initial learning episode.8,9 The more a retrieval practice activity reflects priority content, mirrors authentic information use, includes feedback, and is spaced and repeated, the better.8

Retrieval practice is believed to provide benefits through direct and indirect mechanisms.10 The direct benefit refers to “...the act of taking a test itself.”10p.182 Leamnson11 explains this well: “Intense concentration, under a little pressure, while wrestling with language, cannot but do something to the brain;”11p.111 and, he recommends recall-style questions (open-ended/essay) over recognition-style (multiple-choice) ones. However, some research suggests that multiple-choice questions can be just as effective if written well.12,13 Roediger and Karpicke give examples of the indirect or “mediated” effect of testing as studying continuously throughout a course (ie, distributed practice using cumulative examinations), learning from feedback on practice tests, and using results to direct future study efforts.10 Moreover, if one experiences significant
test anxiety, practice tests can help by desensitizing one to testing conditions, especially if one takes a practice test under time and other examination-related constraints.11 In addition to tests being used effectively throughout a learning activity, tests given before a learning activity (pretests) offer benefits too,14 perhaps by "priming students to focus on key information and cognitive activities encountered during study."15 Study of pretests specifically in CPD is warranted, but given that pretests can serve as a way to complete a needs assessment, an evidence-based strategy in CPD,16 issuing pretests is a defensible action currently, especially in light of their potential learning value, even if only indirect.17

Controlling for the benefits of distributed practice, a clear example of comparing repeated testing to repeated studying comes from graduate medical education. In a randomized controlled trial of long-term retention of information, Larsen et al18 exposed counterbalanced (overlapping) groups of pediatric and emergency medicine residents to an interactive, one-hour teaching session on status epilepticus and myasthenia gravis followed by either repeated studying (review sheets) or by repeated testing (short-answer questions with feedback) immediately after the session, at 2 weeks, and at 4 weeks. Despite a relatively small sample size, on the final test about 6 months after the interactive session, repeated testing resulted in statistically significant results (P < .001) and educationally significant scores (13% higher) compared with repeated studying.

CLASSIC RESEARCH UNDERLYING RETRIEVAL PRACTICE

Like the research on distributed practice, research on the benefits of retrieval date back over 100 years.19 Since then, considerable research demonstrates the benefits of retrieval practice, both through testing and through other retrieval-based learning activities (eg, concept mapping from memory).20 Furthermore, retrieval practice can improve learning of content and its application.9 In a classic and frequently cited set of experiments, Roediger and Karpicke21 demonstrated the direct benefits of retrieval on learning. In one experiment, college students engaged in learning conditions that required they study a text passage for 5 minutes and then either continue studying or recall what they could from memory (Figure 1). In one condition, students studied a passage four times in a row (SSSS). In a second condition, students studied three times and recalled what they could once (SSSR). Finally, in a third condition, students studied once and recalled three times (SRRR). Learning was measured through a final test either 5 minutes or 1 week after learning. After 5 minutes, those in the SSSS group performed best, while those in the SRRR group performed worst. However, after 1 week, significant learning benefits of retrieval practice were observed. Final test scores of students in the SRRR group were 20% higher than those of students in the SSSS group, with the SSSR group falling in-between. Importantly, students in the SRRR and SSSS groups never saw the passage again after recall, demonstrating long-term, direct effects of retrieval on learning, even in the absence of feedback.

NEUROSCIENCE UNDERPINNINGS OF RETRIEVAL PRACTICE

Given the significant effects of retrieval practice on learning, several studies have examined how retrieval practice occurs within the brain. Of particular interest are studies that have
used functional magnetic resonance imaging (fMRI) to examine how differences in regional brain activity may underlie the differences between repeated study and retrieval practice during learning. Wing et al.22 examined brain activity during learning, with participants being asked to learn weakly-associated word pairings (eg, study: TUSK—HORN, test: TUSK—?). After initially studying sets of word pairs while in the MRI scanner, half of the word pairs were shown next as a retrieval test (without feedback), with the remaining word pairs shown again for restudy. The word pairs were then presented in a study block again, followed by a second retrieval test or by restudy. Rather than being compared with a control group consisting of different participants, each participant had some word pairs that they studied four times (SSSS) and some alternating between study and recall (SRSR). Twenty-four hours later, the participants returned and had the final memory test (outside of the MRI scanner), which was the critical test of interest. Replicating and extending the behavior-only studies described in the classic research section, participants had better memory retrieval for the word pairings that were in the retrieval practice condition (SRSR) than those that they merely restudied (SSSS). Two particular brain regions (anterior cingulate cortex and inferior frontal gyrus) often associated with effortful learning were more involved in retrieval practice than in restudying. Another study conducted by Eriksson et al.21 used a procedure with two major differences: (1) There was no restudy-only condition, and (2) the procedure included up to eight memory tests (eight iterations of “SR”), but items were dropped from restudy (S trials) after successful recall. Nonetheless, these researchers also found that activation of one brain region (anterior cingulate cortex) was associated with more retrieval practice. Several other studies with other procedural differences have come to similar conclusions.

EXAMPLES OF CPD STUDIES INVOLVING RETRIEVAL PRACTICE

Often in conjunction with distributed practice, a strategy addressed in the first article of the series,4 the authors found a variety of CPD studies of retrieval practice in the literature from different countries and involving multiple health care professions and specialties. Although not all studies that involved comparisons demonstrated a benefit of retrieval practice in outcomes measured (see, eg, McConnell et al, 2018),24 the majority casts a favorable light on the strategy. In fact, a recent systematic review of test-enhanced learning (a common synonym for retrieval practice) in the health professions found that retrieval practice “...demonstrates consistent and robust effects across different health professions, learner levels [including CPD], [testing] formats, and learning outcomes.”2p337 The systematic review authors recommend that health professions educators use tests, especially ones that require “production” (or recall) of information, in a repeated and spaced way, and that educators provide learners with feedback on test results.2 Reflecting some diversity of published research to date, the authors of this article chose three examples to illustrate the strategy of retrieval practice in the context of CPD.

Kerfoot et al.21 evaluated an online, spaced, educational game among primary care clinicians to improve knowledge of hypertension management and blood pressure control of patients receiving care in eight US Veterans Affairs’ medical centers. The intervention group received the “game,” which consisted of emailed multiple-choice questions (with explanations) every three days for 32 weeks, with performance relative to peers offered to generate friendly competition. Until answered consecutively twice correctly, participants received repeat questions every 12 days (if incorrectly answered) or 24 days (if correctly answered). The control group received identical educational content through online posts.

Christopher et al.26 evaluated the first of a 5-year “stepwise skill reinforcement model” that included CPD as a way to improve important outcomes for Medicaid enrollees living in urban communities in Chicago. The CPD component included a needs assessment, which inquired about knowledge and skill with motivational interviewing, followed by a live CPD activity, an immediate assessment (commitment to change format with barriers anticipated), and another assessment 6 to 8 weeks later (about competence and performance). Participants (physicians and other professionals serving a variety of roles) then received five monthly “testlets” (each with a case scenario, multiple-choice question, immediate feedback, and access to additional information) to measure outcomes and to reinforce the application of skills to practice.

As a final example, Feldman et al.27 conducted a pragmatic randomized controlled trial to improve knowledge retention and self-reported learning behaviors of Canadian pediatricians attending a 4-day annual conference featuring 15 workshops. The control group consisted of participants attending a conference workshop only. The intervention group consisted of participants attending a conference workshop but also completing a pretest (multiple-choice without feedback) 1 week before the conference and a posttest (multiple-choice with feedback) 14 days after the conference.

RECOMMENDATIONS FOR CPD PARTICIPANTS AND PLANNERS

What Can CPD Participants Do to Leverage the Benefits of Retrieval Practice?

For CPD participants considering educational options to make significant improvements in knowledge, skill, attitude, and other important outcomes, taking advantage of a needs assessment, especially one that takes the form of a recall-style pretest, is likely superior to starting an educational activity without any advanced consideration of priority content. As a large-scale example of a pretest, the National Certification Corporation requires that nurses and nurse practitioners, who are beginning a new maintenance-of-certification cycle in a particular specialty or subspecialty, complete a 125-item assessment, the results of which drive an “individual education plan” (number of hours and focus of content) for that certification period.28 Akin to taking a pretest, taking one or more posttests is a way to reinforce important information and to identify remaining gaps that might require additional effort. If spaced in time (≥1 day), each test requires a cycle that involves retrieval (accessing what is currently stored in long-term memory), encoding (considering information again in working memory), and consolidation (restoring information in long-term memory). This learning cycle is critical to mastery and memory (see Appendix, Supplemental Digital Content 1, http://links.lww.com/JCEHP/A113). If a pretest or posttest is not available for an activity, participants can identify a recent, representative case and reflect on what is known and unknown...
with respect to evidence. Discussing the case with a colleague to identify challenging questions would prepare one to learn more effectively through the activity or to follow-up with questions after an activity. Test questions might also be available through specialty societies. Even if such questions are recognition style, a participant can think about the answer before looking at response options, effectively searching long-term memory for the information.

WHAT CAN CPD PLANNERS DO TO LEVERAGE THE BENEFITS OF RETRIEVAL PRACTICE?

CPD planners can enhance the educational value of an activity by offering questions, ideally open-ended ones tied to challenging cases, as pretests and posttests. The expert recruited for the activity might identify or help to develop cases for these purposes and even construct responses that can serve as feedback to address inaccuracies and misperceptions. Another resource about cases for discussion and testing is MedEdPORTAL, an open-access journal of teaching and learning resources in the health professions. Published activities include educational materials and evaluation instruments.

During the activity itself, such as a meeting, the expert-discussant could deliver an unfolding case rather than make a presentation, asking questions that would force participants to query their long-term memory for information. An unfolding case might be more engaging and interactive than a presentation, especially if the participants generated the case based on an adverse outcome. In 2012, the American Academy of Neurology (AAN) effectively used a pretest and multiple posttests to enhance learning associated with its annual conference. The AAN’s approach represents a combination of distributed practice and retrieval practice, but the optimal frequency of tests and the interval between them depends on a variety of factors. Generally speaking, repeated retrieval attempts that are spaced are particularly effective.

CONCLUSION

Retrieval practice involves using tests and related activities that challenge long-term memory to improve important educational outcomes in CPD. Cognitive psychology research in support of retrieval practice dates back over a century, and the field of neuroscience has begun to offer biological explanations that explain the strategy’s effectiveness. Although people typically associate tests with high-stakes judgment, use of retrieval practice as a learning tool is appearing in the literature with associate tests with high-stakes judgment, use of retrieval practice dates back over a century, and the field of neuroscience has begun to offer biological explanations that explain the strategy’s effectiveness. Although people typically associate tests with high-stakes judgment, use of retrieval practice as a learning tool is appearing in the literature with associate tests with high-stakes judgment, use of retrieval practice dates back over a century, and the field of neuroscience has begun to offer biological explanations that explain the strategy’s effectiveness.

Acknowledgments

The authors thank the many scholars who have contributed to the science of learning for over a century.

REFERENCES


