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E D I T O R I A L

Data visualization for inference in tomographic brain imaging

1 |  INTRODUCTION

Tomographic imaging (i.e. magnetic resonance imaging 
[MRI], positron emission tomography [PET], X‐ray com-
puted tomography [CT]) offers a unique window in under-
standing structure‐function relationships in the living brain. 
Nowadays, it is standard practice to acquire entire brain 
volumes and perform statistical analyses at each voxel, an 
approach known as statistical parametric mapping (Friston, 
Frith, Liddle, & Frackowiak, 1991). Because it is impossi-
ble to report the statistical results in every voxel, summary 
tables and figures are of importance. The choice made by 
authors to create such figures should however not be driven 
by aesthetic considerations alone but also driven by the mes-
sage to convey (Rougier et al., 2014). This is not to say that 
beautiful figures should not be used, as more appealing fig-
ures might in fact help in remembering results (Borkin et al., 
2013; Madan, 2015b). At the intersection of psychology, 
computer vision, graphic design and statistics, there is a field 
of research that looks at how to represent information and 
what features are beneficial or harmful in figure designs. For 
instance, Cleveland and McGill (1983) showed that changing 
the axis scaling in scatter plots can alter inference on asso-
ciations between variables. Siegrist (1996) show that using 
perspective in pie charts, lead to falsely infer magnitude dif-
ferences because the slices that are closer to the reader ap-
pear to be larger than those in the back. In general, there are 
recommendations for plotting the data rather than summary 
statistics as those summary values can be obtained with very 
different distributions which can preclude the use of some 
statistical tests (see e.g. Anscombe, 1973, for correlations 
or Weissgerber, Milic, Winham, & Garovic, 2015, for bar 
graphs). Here we discuss information provided in figures 
when presenting tomographic data results. Many proposals 
have already been made by others, what we offer is a princi-
pled way chose among those proposals and apply them.

A review of articles using tomographic techniques pub-
lished between January 2016 and June 2018 in the European 
Journal of Neuroscience (N  =  30 – https ://github.com/
CPern et/MRI_FaceD ata_Wakem an-Henso n/blob/maste 
r/DataV iz/EJN_paper_review.csv) shows that four broad 
types of messages are obtained from statistical parametric 

maps: (a) demonstrating an effect over the whole brain or 
in specific tissues (e.g. grey matter); (b) showing the ana-
tomical location of an effect; (c) revealing an hemispheric 
asymmetry for a condition or stimulus; (d) demonstrating 
the involvement of a set of areas or networks in a given 
task or between groups or conditions. By associating the 
message with the design, it appears clearly that slices are 
preferred to display the anatomical location of an effect 
(5.3 slice/render ratio), while displaying a set of areas and 
networks results are less clearly associated with a design 
(2.5 slice/render ratio) although still dominated by display-
ing slices. The description of the anatomical location of an 
effect was described 19 times, with 16 figures using slices 
and three using renders. The involvement of a set of areas 
was described 22 times with 15 figures using slices only, 
and six with renders (three of them being both renders and 
slices). Among all 30 studies, only two showed the raw 
statistical data (i.e. unthresholded map), and 13 (i.e. 43%) 
did not produce any data plots associated with the data. 
Among the 17 studies plotting data associated to maps, 
three showed inconsistency in that mapping (i.e. do a plot 
for one effect but not another) and 10 plotted significant 
results only, that is, only 23% of all studies plotted results 
independent of statistical significance.

In the following, we propose graphical designs for each 
type of message, adopting the three principles proposed by 
Cleveland & McGill, 1985. First, for readers to appreciate 
where an effect is, slices or renders should be used depending 
on the message (principle 1: detection). Second, to improve 
inference, the assemblage of visual information must be per-
formed to create a unified representation of the results (prin-
ciple 2). Third, to convey information about the strength of 
effects, accurate colour scales and plots must be used (prin-
ciple 3). Proposals are illustrated using data from Wakeman 
& Henson, 2015 in which 16 participants view famous, unfa-
miliar and scrambled faces. Each image was repeated twice 
(immediately in 50% of cases and 5–10 stimuli apart for the 
other 50%) and subjects pressed one of the two keys with ei-
ther their left or right index finger indicating how symmetric 
they regarded each image relative to the average. Here, only 
the main effects of face recognition (famous faces + unfamil-
iar faces > scrambled faces) are investigated, independently 
of repetition levels. Resources necessary to process raw data 
and generate the figures in this article are available at https 
://github.com/CPern et/MRI FaceData Wakeman‐Henson and 

All peer review communications can be found with the online version of 
the article. 
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https ://www.github.com/cMada n/MRIda taviz . All figures 
are also available under CCBY licence at data share https ://
doi.org/10.7488/ds/2516 (Pernet & Madan, 2019).

2 |  SHOW ME THE BLOBS

The first principle, detection, refers to the ability for readers 
to detect where effects are. Presenting an SPM using multi-
ple views is, therefore, better than any single view approach 
(Madan,2015a; Ruisoto, Juanes, Contador, Mayoral, & Prats‐
Galino, 2012). We can, however, distinguish two general 
cases that will drive the design: presenting networks/sets of 
areas involved in a task vs. illustrating the precise anatomical 
involvement of an area. In the first case, readers must be able 
to detect all areas, and in the second case, they must be able 
to detect the spatially circumscribed area under scrutiny. Our 
mini review shows that slices are typically shown even when 
the message is about sets of areas, thus failing to show the 
distribution of activity throughout the brain. Figure 1 illus-
trates this using the thresholded map for the contrast famous 
faces + unfamiliar faces > scrambled faces. In the slice view, 
we can clearly see bilateral fusiform activity. The surface 
view also shows the extent of this activity along the fusiform 
gyrus, particularly on the inflated surface. This surface view 
provides, in addition, some indication of the distribution of 
activity. Considerations should, therefore, be taken to decide 
if a ‘regular’ grey matter (pial) surface or an inflated surface 
better conveys the cluster extent. Indeed, the presentation of 
multiple image display techniques (‘fused images’) has been 
shown to aid in data interpretation (e.g. increase in location 

agreement among clinicians) and comprehension (e.g. relat-
ing lesions to an activation pattern – see Stokking, Zubal, & 
Viergever, 2003, for a review). The use of inflated or pial 
surfaces can be particularly relevant if some clusters are suf-
ficiently within a sulcus to be not visible on a pial surface, 
such as the occipital clusters in Figure  1. The glass brain 
representation gives the most complete depiction of ‘active’ 
areas but makes it difficult to localize the precise location of 
the activity. When the message is about networks or the in-
volvement of many areas, we thus recommend using a glass 
brain (Madan, 2015a), preferably shown from two viewing 
angles with a slight offset to aid in the interpretation of over-
lapping clusters and the perception of depth. If space is avail-
able, this may be complemented with slices when subcortical 
structures are involved as only presenting a glass brain view 
makes it difficult for the reader to determine the depth of 
the activation cluster. To illustrate the anatomical location 
of an effect, slices and (orthogonal) cross‐sectional views 
are recommended. For deep structures, additional three‐di-
mensional representations may also be useful (Ruisoto et al., 
2012) to provide information about the volume of activation 
relative to anatomical structures. This principle is illustrated 
in Figure 2 with all areas significantly activated by stimuli 
(simple effects) displayed on a render, thus creating a rep-
resentation of the overall pattern of activation for this task. 
In contrast to these large effects, localized effects were ob-
served for the contrast of interest famous faces + unfamiliar 
faces > scrambled faces and are thus displayed on slices.

For group studies, we recommend using the average of 
normalized participants’ T1 volumes as an underlay to more 
accurately portray the anatomical locations of effects relative 

F I G U R E  1  Slice, surface and glass brain representations of the intact faces > scrambled pictures contrast. Slice view was generated using 
bspmview. Surface views were generated using mni2fs (Price, 2015). Glass brain views were generated following the procedure described in 
Madan (2015a). An unthresholded statistical map of the contrast can be viewed at https ://neuro vault.org/image s/68963/ 

https://www.github.com/cMadan/MRIdataviz
https://doi.org/10.7488/ds/2516
https://doi.org/10.7488/ds/2516
https://neurovault.org/images/68963/
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to structures (and incidentally show the alignment of anatom-
ical structures among subjects). For instance, results from 
Wakeman and Henson (2015) shown in Figures 2 and 4 are 

using such average. By using the average T1, one can appre-
ciate better the amount of smoothness in registration and true 
brain coverage. When this approach is impractical, for example 

F I G U R E  2  Random effect results from Wakeman and Henson (2015). At the top is shown areas involved in each condition and the contrast 
of interest famous faces + unfamiliar faces > scrambled faces is shown in the middle. Maps show the T‐values with significant areas outlined 
in white (cluster FDR < 0.5 CDT = 0.001). Responses observed at the peak coordinate for each of the four clusters are shown per condition 
(reconstructed hemodynamic response: famous faces in brown, unfamiliar faces in blue and scrambled faces in green; shaded areas show the 
bootstrapped 95% confidence intervals) along with the scatter plots and kernel density estimates of the resulting contrast. Lateralization curves 
in the fusiform gyri (i.e. lateralization index computed on maps with increasing threshold) for each subject are also shown for that contrast. 
At the bottom is shown the association map for the term faces from NeuroSynth meta‐analysis, with the percentage signal change (contrast 
maximum(event)/constant, see Pernet, 2014) in those a priori regions‐of‐interests (data scatter with kernel density estimates in shaded colours, with 
rectangles showing the means and 95% Bayesian credible intervals). Data behind all the plots are available from the online repository
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the study involves a between‐groups analysis where anatomical 
differences are expected (such as young versus older adults), 
we recommend using the ICBM 2009c non‐linear asymmet-
ric structural volume (Fonov et al., 2011) (‘mni_icbm152_t1_
tal_nlin_asym_09c) or the study template, if one was created. 
When considering individual participant's activation (fMRI, 
PET), results must be presented on their own structural im-
ages, and never on a ‘standard’ brain as it leads to inaccurate 
reporting of the anatomy (Devlin & Poldrack, 2007). As shown 
on Figure  3, for some participants differences in activation 
locations between the subject anatomy and the template are 
small (e.g. participant 15) and for others, the anatomy is very 
different from the template (e.g. participant 3).

It should finally be noted that figures do not have to be 
static. No doubt science communication is moving away from 
paper and Portable Document Format (pdf), and we encourage 
the community to embrace interactive figures using visualiza-
tion software such as Papaya (Mango Team, 2016), NiftyView 
(Deng, 2016), BrainBrowser (Sherif, Kassis, Rousseau, 
Adalat, & Evans, 2015), BrainNetBrowser (Xia, Wang, & 
He, 2013), PySurfer (Waskom, Gramfort, Burns, Luessi, & 
Larson, 2016) or Pycortex (Gao, Huth, Lescroart, & Gallant, 
2015). NeuroVault (Gorgolewski et al., 2015) also provides a 
useful demonstration of such visualizations where raw statis-
tical maps can be seen and exchanged (see our results from 
Figure 3 at: https ://neuro vault.org/colle ction s/4319/).

F I G U R E  3  Single participant results from Wakeman and Henson (2015) displayed for each subject in MNI space (MNI template, 
average study T1, normalized T1) and in native (back‐reconstructed SPM) space, illustrating the importance of using adequate anatomical 
underlays when looking at SPMs. For instance, when the subject anatomy is similar to the template results appear at the same location 
(subject 15) but large displacements can occur because of spatial normalization (subject 3). Looking at the fusiform face area (marked by 
the blue cross), each subject (except 11 and 13) show a right fusiform activation although the locations seen on individual's brain indicate 
that some subjects (e.g. 1, 2, 5, 6, 7) have maximum activations located in a more inferior part of the gyrus than what is expected from the 
group result

https://neurovault.org/collections/4319/
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3 |  BEYOND BLOBS

The second principle for graphic design is the assemblage of 
visual information. The goal was to provide readers with a vis-
ual summary of the different information available to help with 
inference and interpretation. As discussed in Poldrack et al. 
(2017), claims of absence of effect and selective activations as 
well as usage of reverse inference are common in neuroimag-
ing, but are often wrong because they require additional quan-
titative testing. We contend that these errors partly relate to 
which information and how information is displayed in figures 
and that better figure designs can help with inference.

4 |  ABSENCE OF EFFECT
Absence of statistical significance is not an absence of 
effect (Killeen, 2005) and in the absence of significance 

one only fails to reject the null hypothesis (Lakens, 2017; 
Pernet, 2017). While the error is common in behavioural 
sciences, it becomes the norm when describing results 
from statistical parametric maps: if there is no activation 
(above a statistical threshold signal), one typically infers 
that there is no effect. Unless using equivalence testing or 
Bayesian statistics, it is however impossible to infer that 
a given experiment or comparison did not lead to activa-
tion in a given region. For instance, results from Wakeman 
and Henson (2015) show a significant activation for faces 
compared to scrambled faces in the medial fusiform gyri 
(Figures 2 and 4) but that does not indicate that other re-
gions are not also activated in response to face stimuli, or 
even more activated by intact faces than scrambled faces. 
In fact, strong but non‐significant effects can also be seen 
more laterally.

Reporting all effects, no matter the level of significance 
is the most effective way to convince readers of the results. 

F I G U R E  4  Random effect results 
illustrating the selective response of the 
medial fusiform cortex. Activations, relative 
to baseline, are seen for each condition 
across the entire inferior occipital cortex 
while the contrast intact Faces > Scrambled 
(= 0.5∗Famous + 0.5∗Unfamiliar− 
1∗Scrambled) leads to significant 
differences (cluster FDR<= 0.005, 
CDT = 0.001, outlined in black) only in 
medial fusiform regions
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Showing raw (unthresholded) statistical maps is thus a step 
in that direction (Jernigan, Gamst, Fennema‐Notestine, & 
Ostergaard, 2003). We recommend here to go even further 
and plot and test effects for all areas expected to be a pri-
ori activated, given the experimental hypotheses. Thanks to 
the vast literature on face perception, we can generate spatial 
predictions using meta‐analysis engines such as NeuroSynth 
(Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). 
Here, we can predict bilateral activations in the posterior 
middle occipital gyri, lateral fusiform, parahippocamplal 
regions, amygdalae, temporo‐parietal junctions and right in-
ferior frontal gyrus (reverse inference map thresholded with 
a minimal extent of 20 voxels from http://www.neuro synth.
org/analy ses/terms/ face/). As our whole brain analysis did 
not reveal significant differences between intact faces and 
scrambled faces in these regions, one might infer that there is 
no effect. Statistical testing in these a priori ROIs, however, 
shows that this would be the wrong inference to make, as dif-
ferences can be observed. As shown in Figure 2, the Bayesian 
bootstrap of the mean reveals stronger activations for faces 
than scrambled faces in the right (lateral) fusiform gyrus 
and left and right middle occipital gyri (i.e. highest density 
intervals of the difference did not include 0, see Table  1). 
Because of expectations (i.e. hypotheses) about where effects 
should be localized, and that many studies found effects or 
differences at these locations, reporting results using such 
priors are worthwhile as this allows comparing results across 
studies and reduce false inference. A practical aspect to con-
sider when using a priori ROIs is how to generate them. 
When possible, using NeuroSynth or GingerALE (Eickhoff 
et  al., 2009) is recommended as these meta‐analysis tools 
can generate unbiased ROI. For investigators interested in 
checking across the whole brain where are ‘in limbo’ areas 
(above baseline but also under the statistical threshold of sig-
nificance), sandwich estimator can be used (de Hollander, 

Wagenmakers, Waldorp, & Forstmann, 2014) testing if the 
difference relative to significant areas is itself significant 
(Gelman & Stern, 2006).

5 |  PLOTTING EFFECTS

Because of the non‐stationary spatial nature of baseline 
activity, summary statistics (average values, T or F val-
ues, etc) displayed on slices and renders can have widely 
different physiological interpretations, and it is, therefore, 
essential to plot results for all a priori ROI but also all re-
gions seen as significant. It may, of course, be impractical 
to have all plots in the core of a publication when many 
results are observed, but it is easy to provide this informa-
tion as supplementary material, along with csv files or raw 
data behind the plots.

Consider for instance a positive contrast (i.e. the mean 
value is bigger than 0). Such result can be obtained from 
three configurations: (a) all conditions are superior or equal 
to 0 (e.g. left/right fusiform gyri), (b) all conditions are in-
ferior or equal to 0 and (c) conditions vary around baseline. 
The two first scenarios are ‘easily’ interpretable, while the 
last case is much harder to understand. This is well illustrated 
in Figure  2, with the contrast famous faces  +  unfamiliar 
faces >  scrambled faces. The contrast values in significant 
areas have similar distributions, yet the right MOG has a 
completely different pattern of response. We, therefore, rec-
ommend to systematically show data points (e.g. beta esti-
mates or percentage signal change) for each condition along 
with the summary statistics of contrasts (typically the mean, 
but not always). For these plots, showing means and standard 
deviations using bar graphs is inadequate (Rousselet, Foxe, & 
Bolam, 2016; Weissgerber et al., 2015), and box plots or vio-
lin plots along with data scatter are recommended. Similarly, 

Region x y z Mean 95% CI
Left fusiform −40 −50 −18 −0.0286 −0.1616, 0.0141
Right fusiform 45 −50 −22 −0.0589 −0.1407, −0.0170
Left middle occipital −38 −84 −10 −0.0620 −0.1513, −0.0242
Right middle occipital 44 −78 −12 −0.1174 −0.2771, −0.0388
Left parahipocampal −26 0 −30 0.0046 −0.0520, 0.0331
Right parahipocampal 34 −8 −32 −0.0109 −0.0541, 0.0173
Left amygdala −20 −6 −18 −0.0163 −0.0966, 0.0311
Right amygdala 22 −6 −18 −0.0174 −0.0772, 0.0225
Left temporo‐parietal 
junction

−56 −54 8 0.0032 −0.0396, 0.0266

Right temporo‐parietal 
junction

54 −44 8 −0.0055 −0.0525, 0.0197

Right middle frontal 
gyrus

42 14 22 0.0079 −0.0377, 0.0293

T A B L E  1  Summary of choices and 
designs to use based on the messages to 
convey

http://www.neurosynth.org/analyses/terms/face/
http://www.neurosynth.org/analyses/terms/face/
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reconstructed hemodynamic responses can be plotted if they 
convey enough information about variance across subjects.

6 |  SELECTIVE ACTIVATIONS

The perception of a lack of effect in areas not significantly 
activated leads to incorrect inferences about the selectivity of 
significantly activated areas, an inferential error known as the 
‘imager fallacy’ (Henson, 2005). Engel and Burton (2013) 
showed that over 80% of naive readers are making such 
error when looking at a thresholded SPM. What we detect as 
face‐selective depends on both the task and the baseline used 
(Stark & Squire, 2001), here scrambled faces, and on the sta-
tistical threshold used. The issue of selectivity or specificity 
of activations in the brain has been hotly debated (see, for ex-
ample, Pernet, Schyns, & Demonet, 2007) but all agree that 
it requires statistical testing and cannot be inferred merely 
from showing a qualitative different activation pattern. What 
a qualitatively different pattern of activation between stimuli 
or conditions does allow one to infer (although it would need 
actual statistical testing of the interaction regions * stimuli or 
conditions) is that information processing differs in at least 
one function (function‐to‐structure deduction as opposed to 
structure‐to‐function induction; Henson, 2005). We, there-
fore, recommended showing raw statistical maps (Jernigan 
et al., 2003), assembling results of simple effects and contrast 
of interests as shown in Figure 2. This allows addressing, at 
least visually, issues of the absence of effects, selectivity and 
qualitative difference. In Figure 4, the raw maps of simple 
effects allow inferring that information processing was simi-
lar across all three conditions because we have similar acti-
vation pattern. Sharing such unthresholded statistical maps 
is also highly encouraged, using online repositories such 
as NeuroVault (Gorgolewski et al., 2015). The result from 
the contrast of interest is also shown unthresholded thus ad-
dressing the issue of non‐significant areas. It is however also 
important to point at where the evidence supports the exist-
ence of an effect, thus highlighting significant areas (Allen, 
Erhardt, & Calhoun, 2012), here using contours (this can be 
achieved easily using tools such as nanslice; Wood, 2018).

7 |  HEMISPHERIC ASYMMETRY

The same way as spatial selectivity can wrongly be inferred 
from the absence of statistically significant results, hemi-
spheric asymmetry is often inferred from thresholded maps. 
As for selectivity, it is recommended to statistically test for 
hemispheric differences going beyond the single level of ac-
tivation by computing lateralization indexes based on boot-
strapped lateralization curves (i.e. using the size and intensity 
of clusters across all thresholds as, for example implemented 

in the LI toolbox, Wilke & Lidzba, 2007). Here, when test-
ing for fusiform activation asymmetry, individual conditions/
stimuli were right lateralized (95% CI famous faces [−0.55, 
−0.14], unfamiliar faces [−0.45, −0.06], scrambled faces 
[−0.54, −0.13]) while visually, maps did not allow to see this 
pattern (Figure 5). When considering the whole brain, only 
famous faces [−0.38, −0.08] and scrambled faces [−0.37, 
−0.06] show right lateralization (unfamiliar faces [−0.029, 
0.022]). To best understand the pattern of lateralization 
across stimuli/conditions, we also recommend using paired 
observations on scatter plots rather than (or in addition to) 
box plots or violin plots (Rousselet et al., 2016).

8 |  COLOURING MAPS AND 
BLOBS

The third principle in graphical design is the use of ‘accu-
rate’ colour scales. Although imaging researchers know to be 
cautious when conducting their analyses to account for rel-
evant nuisance regressors and determining cluster thresholds, 
they often pay little attention in selecting colours to visual-
ize the results of their imaging study. When the message is 
about where active regions are, a single colour can be used. 
When information about the spatial distribution of statistical 
values is also of interest, colour palettes (scales) should be 
used. Such palettes must appropriately convey the underly-
ing data and not introduce perceptual biases. This topic has 
been investigated at length within other fields of study in-
cluding geography (Brewer, Hatchard, & Harrower, 2003; 
Light & Bartlein, 2004; Thyng, Greene, Hetland, Zimmerle, 
& DiMarco, 2016) and astronomy (Green, 2011) and brain 
imagers should also be considering this issue.

Colours in digital images are often generated as combina-
tions of red, green and blue (RGB) intensities. This is, how-
ever, not how colours are perceived by humans. An alternative 
colour space, CIELAB, has been developed to correspond 
to the human perceptual system. In 1976, the International 
Color Consortium (a.k.a. Commission Internationale de 
l'Eclairage, CIE) defined a colour space perceptually uniform 
that relies on luminance (L*), red‐green (A*, ~550–700 nm 
wavelength) and blue‐yellow (B*, ~400–550 nm wavelength) 
colours (International Color Consortium, 2006). The critical 
factor is that changes in luminance are better perceived than 
hue to reflect changes in magnitude (Cleveland & McGill, 
1985) and that averaging RGB values does not linearly cor-
respond to changes in luminance. ‘Traditional’ colour map 
used in brain imaging is not informed by this and instead lead 
to distortions in how colour intensities are perceived and in-
terpreted (Figure 6). Some colour maps have previously been 
developed with brain imaging in mind, for example, Ridgway 
(2009), but it has saturation/luminance issues as most other 
maps. More recently, scientists have generally become more 
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aware of this colour perception artefact with the change of 
default colour map in some software packages to veridic 
(Smith & van der Walt, 2015) or parula (Edens, 2014). The 
luminance function of many sequential, diverging and rain-
bow colour maps is shown in Appendix S1. For more detailed 
discussions of luminance effects in colour maps, see Borland 
and Taylor (2007) and Niccoli (2012).

Using the method described in Kovesi (2015), we have 
developed corrected colour maps now available as .mat 
(implemented by SPM via spm_colourmap.m),.csv, .cmap 
(implemented in FSLeyes 0.26.1), .lut (for MRIcroN, and im-
plemented as .clut in MRICroGL v12): https ://github.com/
CPern et/brain  colours, as demonstrated in Figure 7. At the 
bottom of the figure is shown the difference between the 

common maps and the redesigned, corrected ones. On a lin-
ear scale such as hot, the corrected maps show less saturation 
within clusters, leading to better appreciate spatial variations, 
as best seen for the right frontal cluster. For diverging maps, 
the corrected maps show better the differences in space be-
tween positive and negative values, like here for negative val-
ues in the visual cortex or the right anterior fusiform gyrus. 
Linear colour scales (e.g. hot or BGY) are ideally suited for 
continuous positive or negative values (e.g. contrast T‐maps) 
while diverging colour scales (e.g. NIH, BWR) are better 
suited for continuously negative to positive value maps (e.g. 
contrast F‐maps), but it is essential to make them symmetric 
as to have the mid‐luminance value reflecting the 0 value in 
the data. For this reason, we have added the CET‐D1 and 

F I G U R E  5  Lateralization Indices (LI) for each condition obtained using the LI toolbox (Wilke & Lidzba, 2007). Box plots show the 
median LI and 1.5 times interquartile range. Scatter plots show LI for famous (blue) and unfamiliar faces (red) vs. scrambled faces, and the direct 
comparison famous vs. unfamiliar faces. Simple effects for each condition seen on slices (left) show no strong evidence of lateralization while 
lateralization indices tell otherwise. Compared to box plots, paired scatter plots allow to better understand relationships between items. In the 
fusiform gyri, all subjects lie along the diagonals, indicating very similar indices across stimuli and responses across subjects. For the whole brain, 
the box plots show the same pattern of results as for the fusiform gyri, although with a non‐significant asymmetry for unfamiliar faces. Paired 
scatter plots also show that four subjects (indicated by the arrows on the scatter plots) have close to 0 lateralization for unfamiliar faces while 
showing lateralization for familiar and scrambled faces, which is not seen for the fusiform gyri

F I G U R E  6  Overview of luminance function for common and recently improved colour maps. ‘cmo’ refers to colour maps from the cmocean 
package (Thyng et al., 2016). See Appendix S1 for additional luminance functions of common colour maps

https://github.com/CPernet/brain
https://github.com/CPernet/brain
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CET‐D7 to the repository (referred to as Blue‐White‐Red 
(BWR) and Blue‐Grey‐Yellow (BGY) in 7), the latter one 
having the advantage of having no perceptual dead‐spot at the 
centre. Cyclic colour maps are ideal to display information 
about angles as in retinotopic mapping or fibre orientation 
(see Table 2 for a summary of designs). Other colour maps 
such as rainbow or spectrum should be avoided as they cycle 
through luminance. Finally, when using 3D renders, because 
lighting is used the give a three‐dimensional aspect to the 
image, it interferes with the luminance of colour maps and 
isoluminant colour maps (also available in the repository) 
or single colour should be used. As inferential errors relate 
mostly to local effects (comparison of neighbouring regions, 
see above), this is, however, less problematic.

Although the focus here is on visualizing tomographic 
mapping, these principles apply generally to heat maps (also 
see Gehlenborg & Wong, 2012) and should be of interest to 

all brain imagers, with other possible applications for mag-
neto‐ and electroencephagraphy SPM, scalp maps and source 
reconstruction figures. Furthermore, it may be desirable to 
show categorical data rather than continuous, for example, 
when showing several anatomical regions‐of‐interest or 
graphs of activations in different task conditions. Here we 
suggest using the distinctive colour sets proposed by Brewer 
et al. (2003), Wong (2011), or Kelly (1965). See Appendix S2 
for examples and details for these colours.

9 |  CONCLUSION

SPM must be displayed in non‐misleading ways. Our recom-
mendations are simple to adopt and, we believe, should help 
in making further inference from the results. In general, use 
3D renders and glass brains for sets of regions and networks; 

F I G U R E  7  Same set of results shown using common and redesigned (marked with) colour maps. The first two rows show results on coronal 
and axial slices, with below the corresponding colour maps plotted as a function of luminance. For the hot, NIH and X‐rain maps, the difference in 
presented SPMs between the old and redesigned maps is shown, highlighting where are the differences

T A B L E  2  Summary of choices and designs to use based on the messages to convey

Principle Design Message
Detection Render/Glass brain slices render and slices Networks, set of areas localized effects set of areas includ-

ing subcortical structures
Assemblage Simple effects and contrasts unthresholded maps Unified view of results location of effects and selectivity
Strength of effect Linear colour maps divergent colour maps cyclic colour 

maps
Negative or positive contrast unthresholded maps tono-
topic mapping, fibre orientation
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use slices for the precise anatomical location of an effect. 
Assemble visual information as to help with spatial inference, 
combining simple effects with contrast maps and use un-
thresholded maps highlighting significant areas (Allen et al., 
2012). Carefully choose colour maps to reflect the magnitude 
of effects. Plot data for all a priori ROIs regardless of signifi-
cance and plot data (simple effects and effects of interest) for 
each region declared significant during analyses.
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Figure A1. Luminance functions for many popular colour maps. For some colormaps, the 
sequence of colours was reversed to make comparisons among maps clearer. Colour maps are 
used from the following papers, respectively: “Brew” (Brewer et al., 2003); “CET” (Kovesi, 
2015); “mpl” (Smith & van der Walt, 2015); “cmo” (Thyng et al., 2016); “pm” (Niccoli, 2012); 
parula (Edens, 2014); bipolar (Ridgway, 2009); haxby (Haxby et al.,1983; Caress & Chayes, 
2009); cubehelix (Green, 2011); several of the default colour maps (e.g., spring, autumn, bone) 
are originally from MATLAB, but were later included in other software packages (such as in 
Matplotlib). 



 
 
 
 
 

 
Figure A2. Suggested distinctive colours for categorical analyses. Colours selected from 
Brewer et al. (2003) ,Wong (2011), and Kelly (1965). 

 


