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Abstract 

While it is well established that cortical morphology differs in relation to a variety of inter-individual factors, it is often 
characterized using estimates of volume, thickness, surface area, or gyrification. Here we developed a computational 
approach for estimating sulcal width and depth that relies on cortical surface reconstructions output by FreeSurfer. 
While other approaches for estimating sulcal morphology exist, studies often require the use of multiple brain mor-
phology programs that have been shown to differ in their approaches to localize sulcal landmarks, yielding morpho-
logical estimates based on inconsistent boundaries. To demonstrate the approach, sulcal morphology was estimated 
in three large sample of adults across the lifespan, in relation to aging. A fourth sample is additionally used to estimate 
test–retest reliability of the approach. This toolbox is now made freely available as supplemental to this paper: https ://
cmada n.githu b.io/calcS ulc/.
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1 Introduction
Cortical structure differs between individuals. It is well 
known that cortical thickness generally decreases with 
age [1–11]; however, a more visually prominent differ-
ence is the widening of sulci, sometimes described as ‘sul-
cal prominence’ [12–17]. In the literature, this measure 
has been referred to using a variety of names, including 
sulcal width, span, dilation, and enlargement, as well as 
fold opening. With respect to aging and brain morphol-
ogy, sulcal width has been assessed qualitatively by clini-
cians as an index of cortical atrophy [12, 13, 15, 16, 18, 
19]. An illustration of age-related differences in sulcal 
morphology is shown in Fig. 1.

Using quantitative approaches, sulcal width has been 
shown to increase with age [20–23] likely relating to sub-
sequent findings of age-related decreases in cortical gyri-
fication [2, 5–7, 24]. Sulcal widening has also been shown 
to be associated with decreases in cognitive abilities [25] 
and physical activity [26]. With respect to clinical condi-
tions, increased sulcal width has been found in dementia 
patients relative to healthy controls [27–33], as well as 
with schizophrenia patients [34–36] and mood disorders 
[37].

One of the most common programs for conducting 
cortical surface analyses is FreeSurfer [38]. Unfortunately, 
though FreeSurfer reconstructs cortical surfaces, it does 
not estimate sulcal width or depth, leading researchers to 
use FreeSurfer along with another surface analysis pro-
gram, BrainVISA [39–42], to characterize cortical thick-
ness along with sulcal morphology (e.g, [22, 25, 26, 43, 
44]). While this combination allows for the estimation 
of sulcal morphology in addition to standard measures 
such as cortical thickness, FreeSurfer and BrainVISA rely 
on different anatomical landmarks [45] which can yield 
differences in their resulting cortical surface reconstruc-
tions [46]. Admittedly, determining the boundaries for 
an individual sulcus and incorporating individual corti-
cal variability is difficult [45, 47–52]. While an enumerate 
amount of other methods have already been proposed to 
identify and characterize sulcal morphology (e.g., [53–
74]), ultimately these all are again using different land-
marks than FreeSurfer uses for cortical parcellations (i.e., 
volume, thickness, surface area, gyrification). Note that, 
though FreeSurfer itself does compute sulcal maps, these 
are computed as normalized depths, not in real-world 
units (e.g., [75]); furthermore, these are also independent 
of sulcal width information.

Here we describe a procedure for estimating sulcal 
morphology and report age-related differences in sul-
cal width and depth using three large samples of adults 
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across the lifespan: two of these datasets are from West-
ern samples, Dallas Lifespan Brain Study (DLBS) and 
Open Access Series of Imaging Studies (OASIS), as well 
as one East Asian sample, Southwest University Adult 
Lifespan (SALD), as potential differences between pop-
ulations have been relatively understudied [76, 77]. To 
further validate the method, test–retest reliability was 
also assessed using a sample of young adults who were 
scanned ten times within the span of a month [78, 79]. 
All four of these datasets are open-access and have suf-
ficient sample sizes to be suitable for brain morphology 
research [77]. This procedure has been implemented as 
a MATLAB toolbox, calcSulc, that calculates sulcal 
morphology—both width and depth—using files gener-
ated as part of the standard FreeSurfer cortical recon-
struction and parcellation pipeline. This toolbox is now 
made freely available as supplemental to this paper: https 
://cmada n.githu b.io/calcS ulc/.

2  Materials and methods

2.1  Datasets
2.1.1  OASIS
This dataset consisted of 314 healthy adults (196 females), 
aged 18–94 (see Fig. 2), from the Open Access Series of 
Imaging Studies (OASIS) cross-sectional dataset (http://

www.oasis -brain s.org) [80]. Participants were recruited 
from a database of individuals who had (a) previously 
participated in MRI studies at Washington University, 
(b) were part of the Washington University Commu-
nity, or (c) were from the longitudinal pool of the Wash-
ington University Alzheimer Disease Research Center. 
Participants were screened for neurological and psychi-
atric issues; the Mini-Mental State Examination (MMSE) 
and Clinical Dementia Rating (CDR) were adminis-
tered to participants aged 60 and older. To only include 
healthy adults, participants with a CDR above zero were 
excluded; all remaining participants scored 25 or above 
on the MMSE. Multiple T1 volumes were acquired 
using a Siemens Vision 1.5 T with a MPRAGE sequence; 
only the first volume was used here. Scan param-
eters were: TR = 9.7  ms; TE = 4.0  ms; flip angle = 10◦ ; 
voxel size = 1.25× 1× 1mm . Age-related comparisons 
for volumetric and fractal dimensionality measures from 
the OASIS dataset were previously reported [7, 81, 82].1

Fig. 1 Representative coronal slices and cortical surfaces with sulcal identification for 20- and 80-year-old individuals

1 Note that analyses reported in these previous papers were based on pre-
processing in FreeSurfer v5.3.0, rather than FreeSurfer v6.0.

https://cmadan.github.io/calcSulc/
https://cmadan.github.io/calcSulc/
http://www.oasis-brains.org
http://www.oasis-brains.org
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2.1.2  DLBS
This dataset consisted of 315 healthy adults (198 
females), aged 20–89 (see Fig. 2), from wave 1 of the Dal-
las Lifespan Brain Study (DLBS), made available through 
the International Neuroimaging Data-sharing Initiative 
(INDI) [83] and hosted on the Neuroimaging Informat-
ics Tools and Resources Clearinghouse (NITRC) [84] 
(http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.
html). Participants were screened for neurological and 
psychiatric issues. No participants in this dataset were 
excluded a priori. All participants scored 26 or above on 
the MMSE. T1 volumes were acquired using a Philips 
Achieva 3  T with a MPRAGE sequence. Scan param-
eters were: TR = 8.1  ms; TE = 3.7  ms; flip angle = 12◦ ; 
voxel size = 1× 1× 1mm . See Kennedy et  al. [85] 
and Chan et  al. [86] for further details about the data-
set. Age-related comparisons for volumetric and fractal 
dimensionality measures from the DLBS dataset were 
previously reported [7, 81, 82].1

2.1.3  SALD
This dataset consisted of 483 healthy adults (303 females), 
aged 19–80 (see Fig.  2), from the Southwest University 
Adult Lifespan Dataset (SALD) [87], also made available 
through INDI and hosted on NITRC (http://fcon_1000.
projects.nitrc.org/indi/retro/sald.html). No participants 
in this dataset were excluded a priori. T1 volumes were 
acquired using a Siemens Trio 3  T with a MPRAGE 
sequence. Scan parameters were: TR = 1.9  s; TE = 
2.52 ms; flip angle = 9◦ ; voxel size = 1× 1× 1mm.

2.1.4  CCBD
This dataset consisted of 30 healthy adults (15 females), 
aged 20–30, from the Center for Cognition and Brain 
Disorders (CCBD) at Hangzhou Normal University [78]. 

Each participant was scanned for 10 sessions, occurring 
2–3 days apart over a 1-month period. No participants 
in this dataset were excluded a priori. T1 volumes were 
acquired using a SCANNER with a FSPGR sequence 
. Scan parameters were: TR = 8.06  ms; TE = 3.1  ms; 
flip angle = 8◦ ; voxel size : 1× 1× 1mm . This data-
set is included as part of the Consortium for Reliability 
and Reproducibility (CoRR) [88] as HNU1. Test–retest 
comparisons for volumetric and fractal dimensional-
ity measures from the CCBD dataset were previously 
reported [79].1

2.2  Procedure
Data were analyzed using FreeSurfer v6.0 (https ://surfe 
r.nmr.mgh.harva rd.edu) on a machine running Red Hat 
Enterprise Linux (RHEL) v7.4. FreeSurfer was used to 
automatically volumetrically segment and parcellate cor-
tical and subcortical structures from the T1-weighted 
images [38, 89] FreeSurfer’s standard pipeline was used 
(i.e., recon-all). No manual edits were made to the 
surface meshes, but surfaces were visually inspected. 
Cortical thickness is calculated as the distance between 
the white matter surface (white–gray interface) and pial 
surface (gray-CSF interface). Gyrification was also calcu-
lated using FreeSurfer, as described in Schaer et al. [90]. 
Cortical regions were parcellated based on the Destrieux 
et al. [91] atlas, also part of the standard FreeSurfer anal-
ysis pipeline.

3  Calculation
Here we outline a novel, simple yet robust, automated 
approach for estimating sulcal width and depth, based 
on intermediate files generated as part of the standard 
FreeSurfer analysis pipeline. This procedure and func-
tionality has been implemented in an accompanying 
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Fig. 2 Histogram of age distribution for the three aging datasets: OASIS, DLBS, and SALD, only for participants included in the sulcal morphology 
analyses. Each bar corresponds to a 2-year age-range bin
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MATLAB toolbox, calcSulc. The toolbox is supple-
mental material to this paper and is made freely avail-
able: https ://cmada n.githu b.io/calcS ulc/.

For each individual sulcus (for each hemisphere 
and participant), the following approach was used to 
characterize the sulcal morphology. The procedure 
has been validated and is supported for the following 
sulci: central, post-central, superior frontal, inferior 
frontal, parieto-occipital, occipito-temporal, middle 
occipital and lunate, and marginal part of the cingu-
late (S_central, S_postcentral, S_front_sup, 
S_front_inf, S_parieto_occipital, S_oc-
temp_med&Lingual, S_oc_middle&Lunatus, 
S_cingul-Marginalis). All of the sulci are labeled 
in Fig. 3. An overview of the approach is illustrated in 
Fig. 4. 

First the pial surface and Destrieux et  al. [91] par-
cellation labels were read into MATLAB by using 
the FreeSurfer-MATLAB toolbox provided along-
side FreeSurfer (calcSulc_load), this consists 
of the ?h.pial (FreeSurfer cortical surface mesh) 
?h.aparc.a2009s.annot (FreeSurfer parcella-
tion annotation) files. Using this, the faces associated 
with the individual sulcus were isolated as a 3D mesh 
(calcSulc_isolate).

The width of each sulcus (calcSulc_width) was 
calculated by determining which vertices lay on the 
boundary of the sulcus and the adjacent gyrus. An 
iterative procedure was then used to determine the 
‘chain’ of edges that would form a contiguous edge loop 
that encircle the sulcal region (calcSulc_getEd-
geLoop). This provided an exhaustive list of all vertices 
that were mid-way between the peak of the respective 
adjacent gyri and depth of the sulcus itself. For each 
vertex in this edge-loop, the nearest point in 3D space 
that was not neighboring in the loop was determined, 
with the goal of finding the nearest vertex in the edge 
that was on the opposite side of the sulcus—i.e., a line 
between these two vertices would ‘bridge’ across the 
sulcus. Since these nearest vertices in the edge loop are 

not necessarily the nearest vertex along the opposite 
sulcus wall, an exhaustive search (walk) was performed, 
moving up to a 4 edges from the initially determined 
nearest vertex (configurable as options.setWidth-
Walk). The sulcal width was then taken as the median 
of these distances that bridged across the sulcus 
(see Fig. 4).

The depth of each sulcus (calcSulc_depth) addi-
tionally used FreeSurfer’s sulcal maps (?h.sulc) to 
determine the relative inflections in the surface mesh, 
which would be in alignment with the gyral crown. The 
deepest points of the sulcus, i.e., the sulcal fundus, were 
taken as the 100 vertices within the sulcus with the lowest 
values in the sulcal map. For these 100 vertices, the short-
est (i.e., Euclidean) distance to the smoothed enclosing 
surface was calculated (generated by FreeSurfer’s built-
in gyrification analysis [?h.pial-outer-smoothed], 
[90]), and the median of these was then taken as the sul-
cal depth. While the use of a Euclidean distance here 
underestimates the true sulcal depth, it is nonetheless 
robust (as demonstrated in the present work) and does 
not markedly differ from other algorithmic approaches 
for estimating sulcal depth for much of the cortex (see 
[74] for a comparison).

Sulcal morphology, width and depth, was estimated for 
eight major sulci in each hemisphere: central, post-cen-
tral, superior frontal, inferior frontal, parieto-occipital, 
occipito-temporal, middle occipital and lunate, and mar-
ginal part of the cingulate. Preliminary analyses addition-
ally included superior and inferior temporal sulci and 
intraparietal sulcus, but these were removed from further 
analysis when the sulci width estimation was found to fail 
to determine a closed boundary edge-loop at an unaccep-
table rate ( > 10% ) for at least one hemisphere. This edge 
boundary determination failed when parcellated regions 
were labeled by FreeSurfer to comprise at least two dis-
continuous regions, such that they could not be identified 
using a single edge loop. Nonetheless, sulcal measures 
failed to be estimated for some participants, resulting in 
final samples of 310 adults from the OASIS dataset, 312 
adults from the DLBS dataset, 481 adults from the SALD 
dataset, and 30 adults from the CCBD dataset (see Fig. 2).

3.1  Test–retest reliability
Test–retest reliability was assessed as intraclass correla-
tion coefficient (ICC), which can be used to quantify the 
relationship between multiple measurements [79, 92–
98]. McGraw and Wong [99] provide a comprehensive 
review of the various ICC formulas and their applicabil-
ity to different research questions. ICC was calculated as 
the one-way random effects model for the consistency of 
single measurements, i.e., ICC(1, 1). As a general guide-
line, ICC values between .75 and 1.00 are considered 

Fig. 3 Example cortical surface with estimated sulci identified and 
labeled

https://cmadan.github.io/calcSulc/
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Fig. 4 Illustration of the sulcal morphology method. a Cortical surface estimation and sulcal identification, as output from FreeSurfer. b Sulcal width 
and depth estimation procedure. Note that the surface mesh and estimation algorithm use many more vertices than shown here
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‘excellent,’ .60–.74 is ‘good,’ .40–.59 is ‘fair,’ and below .40 
is ‘poor’ [100].

4  Results and discussion
4.1  Age‑related differences in sulcal morphology
Scatter plots showing the relationships between each 
individual sulcal width and depth and age, for the OASIS 
dataset, are shown in Fig.  5; the corresponding correla-
tions for all datasets are shown in Tables  1 and  2. The 
width and depth of the central and post-central sulci 
appear to be particularly correlated with age, with wider 
and shallower sulci in older adults. Age-related differ-
ences in sulcal width and depth and generally present in 
other sulci as well, but are generally weaker.

Age-related relationships for each sulcus were relatively 
consistent between the two Western lifespan datasets 
(OASIS and DLBS), but age-related differences in sulcal 
width (but not depth) were markedly weaker in the East 
Asian lifespan dataset (SALD). This finding will need to 
be studied further, but may be related to gross differ-
ences in anatomical structure [101–103]—and motivates 
the need to aging in samples that vary in ethnicity/race 
and are otherwise not of a so-called WEIRD (Western, 

Educated, Industrialized, Rich, and Democratic) demo-
graphic [77]. Additionally, there did not appear to be a 
significant influence of field strength (i.e., 1.5  T for the 
OASIS dataset vs. 3 T for the DLBS dataset) on estimates 
of sulcal morphology. Importantly, test–retest reliabil-
ity, ICC(1, 1), was particularly good for the sulcal depth 
across individual sulci.

To obtain a coarse summary measure across sulci, we 
averaged the sulcal width across the 16 individual sulci 
for each individual, and with each dataset, and exam-
ined the relationship between mean sulcal width with 
age. These correlations, shown in Table 1, indicate that 
the mean sulcal width was generally a better indicator 
of age-related differences in sulcal morphology than 
individual sulci, and had increased test–retest reliabil-
ity. Mean sulcal depth was similarly more sensitive to 
age-related differences than for an individual sulcus 
(e.g., it is unclear why the relationship between age and 
width of the central sulcus differed between samples) 
and the magnitude of this relationship was more con-
sistent across datasets. Reliability was even higher for 
mean sulcal depth than mean sulcal width.

Fig. 5 Relationship between a sulcal depth and b width for each of the sulci examined, based on the OASIS dataset
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Table 1 Correlations between sulcal width and age for each sulci and hemisphere, for each of the three lifespan datasets 
examined

Test–retest reliability, ICC(1, 1), is also included from the CCBD dataset
a FreeSurfer labels in version 6.0; labels are named slightly different in version 5.3. ICC values between .75 and 1.00 are considered ‘excellent,’ .60–.74 is ‘good,’ .40–.59 is 
‘fair,’ and below .40 is ‘poor’ [100]

Sulci name FreeSurfer  labela Hemi. OASIS DLBS SALD CCBD

r (age) r (age) r (age) ICC(1,1) 95% CI of ICC

Central S_central L .586 .486 .322 .858 [ 0.785, 0.918]

R .632 .523 .294 .842 [ 0.764, 0.908]

Post-central S_postcentral L .413 .391 .198 .764 [ 0.660, 0.858]

R .460 .436 .213 .864 [ 0.794, 0.922]

Superior Frontal S_front_sup L .281 .421 .055 .797 [ 0.703, 0.880]

R .205 .291 .035 .843 [ 0.764, 0.909]

Inferior frontal S_front_inf L .217 .323 − .037 .775 [ 0.675, 0.865]

R .043 .222 − .036 .831 [ 0.748, 0.901]

Parieto-occipital S_parieto_occipital L .348 .279 .145 .616 [ 0.486, 0.753]

R .257 .357 .213 .682 [ 0.561, 0.802]

Occipito-temporal S_oc-temp_med&Lingual L .227 .270 − .055 .660 [ 0.535, 0.786]

R .168 .189 .017 .692 [ 0.572, 0.808]

Middle occipital and lunate S_oc_middle&Lunatus L .306 .271 .145 .605 [ 0.474, 0.744]

R .212 .177 .023 .625 [ 0.496, 0.760]

Marginal part of cingulate S_cingul-Marginalis L .340 .275 .075 .783 [ 0.685, 0.871]

R .430 .382 .161 .757 [ 0.651, 0.853]

Mean .636 .592 .227 .907 [ 0.856, 0.947]

Table 2 Correlations between sulcal depth and age for each sulci and hemisphere, for each of the three lifespan datasets 
examined

Test–retest reliability, ICC(1, 1), is also included from the CCBD dataset
a FreeSurfer labels in version 6.0; labels are named slightly different in version 5.3. ICC values between .75 and 1.00 are considered ‘excellent,’ .60–.74 is ‘good,’ .40–.59 is 
‘fair,’ and below .40 is ‘poor’ [100]

Sulci name FreeSurfer  labela Hemi. OASIS DLBS SALD CCBD

r (age) r (age) r (age) ICC (1,1) 95% CI of ICC

Central S_central L − .517 − .205 − .346 .848 [ 0.772, 0.912]

R − .505 − .256 − .348 .860 [ 0.789, 0.919]

Post-central S_postcentral L − .371 − .264 − .268 .965 [ 0.944, 0.981]

R − .436 − .246 − .330 .890 [ 0.831, 0.937]

Superior frontal S_front_sup L − .523 − .454 − .397 .899 [ 0.844, 0.943]

R − .413 − .465 − .444 .886 [ 0.825, 0.935]

Inferior frontal S_front_inf L − .517 − .490 − .491 .932 [ 0.893, 0.962]

R − .496 − .480 − .490 .915 [ 0.868, 0.952]

Parieto-occipital S_parieto_occipital L − .145 − .093 − .241 .979 [ 0.966, 0.989]

R − .124 .059 − .229 .970 [ 0.952, 0.984]

Occipito-temporal S_oc-temp_med&Lingual L − .509 − .323 − .263 .953 [ 0.926, 0.974]

R − .404 − .316 − .281 .913 [ 0.864, 0.951]

Middle occipital and lunate S_oc_middle&Lunatus L − .290 − .167 − .150 .949 [ 0.919, 0.972]

R − .288 − .120 − .132 .922 [ 0.879, 0.956]

Marginal part of cingulate S_cingul-Marginalis L − .092 − .035 − .268 .952 [ 0.925, 0.974]

R − .032 − .017 − .156 .918 [ 0.872, 0.954]

Mean − .465 − .645 − .600 .972 [ 0.955, 0.985]
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4.2  Comparison with other age‑related structural 
differences

Within each dataset, mean sulcal depth and width cor-
related with age, as shown in Tables 1 and 2. Of course, 
other measures of brain morphology also differ with 
age, such as mean (global) cortical thickness [OASIS: 
r(308) = −.793 , p < .001 ; DLBS: r(310) = −.759 , 
p < .001 ; SALD: r(479) = −.642 , p < .001 ]. and vol-
ume of the third ventricle (ICV-corrected) [OASIS: 
r(308) = .665 , p < .001 ; DLBS: r(310) = .677 , p < .001 ; 
SALD: r(479) = .328 , p < .001 ]. Previous studies have 
demonstrated that both of these measures are robust 
estimates of age-related differences in brain structure 
[1–6, 8–11, 81, 104].

To test if these mean sulcal measures served as dis-
tinct measures of age-related differences in brain mor-
phology, beyond those provided by other measures, 
such as mean cortical thickness and volume of the 
third ventricle, we conducted partial correlations that 
controlled for these two other measures of age-related 
atrophy. Mean sulcal width [OASIS: rp(306) = .188 , 
p < .001 ; DLBS: rp(308) = .177 , p = .002 ; SALD: 
r(477) = .003 , p = .96 ] and depth [OASIS: 
rp(306) = −.443 , p < .001 ; DLBS: rp(308) = −.397 , 
p < .001 ; SALD: rp(477) = −.534 , p < .001 ] both 
explained unique variance in relation to age. Thus, even 
though more established measures of age-related dif-
ferences in brain morphology were replicated here, the 
additional sulcal measures captured aspects of aging 
that are not accounted for by these extant measures, 
indicating that these sulcal measures are worth pur-
suing further and are not redundant with other meas-
ures of brain structure. Providing additional support 
for this, mean sulcal width and depth were only weakly 
related to each other [OASIS: r(308) = −.192 , p < .001 ; 
DLBS: r(310) = .092 , p = .104 ; SALD: r(479) = .119 , 
p = .009].

As with the individual sulci measures, we did observe 
a difference between samples where some age-related 
measures were less sensitive in the East Asian lifespan 
sample (SALD), here in the ventricle volume correla-
tion and the unsurprisingly weaker age relationship in 
the partial correlation using sulcal width. These sample 
differences are puzzling, though there is a general cor-
respondence between the two Western samples. Given 
that much of the literature is also based on Western 
samples, we think further research with East Asian 
samples, and particularly comparing samples with the 
same analysis pipeline, is necessary to shed further 
light on this initial finding.

5  Conclusion
Differences in sulcal width and depth are quite visually 
prominent, but are not often quantified when examin-
ing individual differences in cortical structure. Here we 
examined age-related differences in both sulcal meas-
ures as a proof-of-principle to demonstrate the utility of 
the calcSulc toolbox that accompanies this paper and is 
designed to closely compliments the standard FreeSurfer 
pipeline. This allows for the additional measurement of 
sulcal morphology, to add to the extant measures of brain 
morphology such as cortical thickness, area, and gyrifi-
cation. Critically, this approach uses the same landmarks 
and boundaries as in the Destrieux et al. [91] parcellation 
atlas, in contrast to all previous approaches to character-
ize sulcal features. This toolbox is now made freely avail-
able as supplemental to this paper: https ://cmada n.githu 
b.io/calcS ulc/.

Using this approach, here we demonstrate age-related 
differences in sulcal width and depth, as well as high 
test–retest reliability. Since individual differences in sul-
cal morphology are sufficiently distinct from those char-
acterized by other brain morphology measures, this 
approach should complement extant work of investi-
gating factors that influence brain morphology, e.g., see 
Fig.  3 of Madan and Kensinger [7]. Given the flexibility 
in the methodological approach, these measures can be 
readily applied to other samples after being initially pro-
cessed with FreeSurfer .
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