Deliberate Practice in Simulation-Based Surgical Skills Training: A Scoping Review

Mark Higgins, BM, BS, MMedSci (Med ED), FRCS (Eng), Christopher R. Madan, BSc (Spec), PhD, PGCHE, FPsyS, FHEA, and Rakesh Patel, MB, ChB, MD, MMedEd, MRCP [UK], MRCP (Nephrology), SFHEA

University of Nottingham, Nottingham, United Kingdom

BACKGROUND: In recent years there has been a shift from traditional Halstedian methods toward more simulation-based medical education (SBME) for developing surgical skills. Questions remain about the role and value of SBME, although feedback and engagement in repetitive practice have been associated with positive learning outcomes. Regardless of approach, the principles of deliberate practice align with both the Halstedian traditions and ways of implementing SBME. Whilst deliberate practice is well described in the wider literature, the extent to which it is an effective instructional approach in surgical training remains unknown.

OBJECTIVE: To explore the effectiveness of deliberate practice as an instructional design for developing surgical skills through SBME interventions, as assessed by improvements in trainee performance and/or patient outcomes.

METHODS: A combined search was conducted in PUBMED, CINAHL, EMBASE, MEDLINE, PSYCHINFO, and Google Scholar. Three hundred one articles were screened and 17 met the inclusion criteria for analysis.

RESULTS: There was heterogeneity of study methods with 6 randomized control trials, 7 pretest/post-test design, 2 nonrandomized comparisons and 2 observational studies. All articles demonstrated positive learner outcomes following SBME with deliberate practice, although there was no direct comparison to another instructional method. Two studies demonstrated skill transfer to the clinical environment and 1 demonstrated improved patient outcomes.

CONCLUSION: Deliberate practice informed SBME interventions appeared effective for developing surgical skills among trainee surgeons, however the reliability of these conclusions was limited by the modest quality of the research studies and the design elements of deliberate practice were inconsistently applied. There was little evidence that deliberate practice led to skills retention beyond 30 days, although participant numbers were low and the quality of studies was modest. (J Surg Ed 78:1328–1339. © 2020 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.)

KEY WORDS: surgical skills, skills training, simulation, deliberate practice

COMPETENCIES: Practice-Based Learning and Improvement

INTRODUCTION

The impact of working time regulations over the past decade has been especially felt within surgery, resulting in a move away from the Halstedian model of training.1,2 With less time available to train under the supervision of an expert in theatre, trainees now use more simulation-based medical education (SBME) alongside traditional methods, to develop surgical expertise. The use of SBME has advantages, particularly amongst trainee surgeons, who are able to develop basic skills with relative efficiency, and without compromising their own, or patient safety.

In comparison to no intervention, SBME has a number of benefits.3 Trainees with access to SBME perform better during operations on live patients when evaluated against objective outcomes measures. Similarly, trainees exposed to SBME demonstrate more efficient hand movements, faster completion and fewer errors.4-5 However, when trainees with access to SBME are compared to those trained by traditional forms of instruction, there is little additional learning gain conferred by SBME.6,9
across surgical subspecialties, often with poor trainee engagement with SBME, and trainees reporting limited access and protected time for SBME. A national survey of 1130 UK surgical trainees identified only 41.2% had regular access to a skills simulator and as few as 16.5% had access out of normal working hours. Given the costs associated with SBME are significant, questions remain about the role and value of SBME for the development of surgical expertise among those in training.

Beyond the practicalities and pragmatics of SBME, there are also philosophical and pedagogical issues that may explain variability of SBME use across different training programmes. These include the fundamental challenge of suspending disbelief among trainees, through to a perceived dissociation between a SBME task and the corresponding one trainees undertake in real practice. There is also evidence that trainees and trainers lack understanding of general SBME methodology and are unfamiliar with those aspects that actually lead to improved educational outcomes. The evidence for SBME against this backdrop is difficult to interpret because these contextual factors specifically relate to the way SBME is embedded within curricula, and the way trainers deliver SBME to trainees. Alongside curricula integration, early reviews in SBME identified that feedback, engagement in repetitive practice and opportunities for learners to practice increasingly challenging tasks without fear of failure were associated with positive learning outcomes.

These features align with the principles of deliberate practice as an instructional method. Deliberate practice is a distinct form of teacher-led practice within which trainees are provided structured training tasks that provide opportunity for repetitions and gradual improvement towards a defined goal. Unlike mastery-learning, which shares some of the above conditions but has its roots in behaviorism, a central tenet of deliberate practice is the need to understand the thought processes behind a particular behavior; to recognize and define the mental representations associated with expert performance and develop a way to construct these in the minds of individuals. The differences may seem slight, but the mastery learning approach focuses on providing opportunities for repeated practice until the optimal behavior is achieved, whereas the expert-performance with deliberate practice also seeks to develop different types of knowledge alongside the practical skills development under supervision by experts. Whilst deliberate practice is well described in the wider literature, and there is evidence of improved learner outcomes from across different medical domains, the extent to which it is an effective instructional approach for delivering improved patient outcomes in surgery remains unknown.

The purpose of this research was to explore the effectiveness of deliberate practice as an instructional design for developing surgical skills through SBME interventions. Given the heterogeneity of empirical research involving SBME interventions across diverse educational contexts, with different reported outcomes, a review of literature was undertaken to map the way deliberate practice as a concept had been applied in practice. A scoping review or scoping study is a form of knowledge synthesis that addresses an exploratory research question aimed at mapping key concepts, types of evidence, and gaps in research related to a defined area or field by systematically searching, selecting, and synthesizing existing knowledge. This approach should be viewed as “hypothesis-generating” rather than “hypothesis-challenging.” This scoping review aimed to evaluate the effectiveness of deliberate practice informed SBME interventions in improving trainee performance when demonstrating surgical skills and/or improving patient outcomes.

METHODS

Study identification

A systematic search of the literature was carried out on February 24, 2019 using the search terms (“simulation” OR “simulator” OR “simulat”) AND (“surgical skill” OR “psychomotor skill” OR “surgery”) AND (“deliberate practice”). The electronic databases PubMed CINAHL EMBASE Medline PsychInfo were accessed using the NICE Healthcare Databases Advanced Search. No time period was specified and the search limited to English language journals. The same search was also carried out using Google Scholar. The search was repeated replacing the term “deliberate practice” with “feedback” AND “assessment” AND “repetition” to capture additional studies that may not have explicitly stated deliberate practice as a description for the SBME, but where the type, intensity, and quality of the intervention were synonymous with the deliberate practice as an instructional approach.

Eligibility Criteria

All articles with evidence of an intervention using SBME to teach surgical skills using deliberate practice were included. Likewise, articles were also included with descriptions of methods that encompassed the key concepts of this model as described by Ericsson; repetition, assessment, and feedback. Research outcomes beyond initial learner reactions, that is, reaching Kirkpatrick’s hierarchy level 2 or above was also necessary for inclusion in this study. “Surgical skills” were defined as any practical procedure listed as a core competency in UK surgical training curricula. Reference was made to the Intercollegiate Surgical Curriculum Programme for core and specialty
surgical training. Articles not presented in the English language were excluded. Articles were also not included when there was no definable SBME intervention described (e.g., literature reviews, studies investigating construct validity for a simulation model and descriptions of educational theory). The intention of the review was to investigate the role of SBME using deliberate practice on the development of practical skills that would otherwise have been developed in the operating theatre, so articles that described nonsurgical, or nontechnical skills and human factors for example, teamwork or communication, were also excluded.

Article Review and Data Extraction

Duplicate entries were eliminated and the remaining articles objectively screened against the eligibility criteria by a single reviewer (MH). Article titles or abstracts without sufficient relevance to the aim were excluded, as were articles where the full text provided insufficient information about the deliberate practice based SBME intervention. Three articles that were encountered during a review of references from an excluded secondary review article were also included. A PRISMA flow diagram summarizes the process (see Fig. 1). The remaining 17 papers were read in full by 2 reviewers (MH and RP) and data independently extracted into a specifically designed charting table (see Fig. 2) based on guidance for the conduct of scoping reviews outlined by the Joanna Briggs Institute. The context, design, and study population were recorded and a summary created for each study with details of the deliberate practice elements employed, the reported outcomes and study limitations. Disagreements between the 2 reviewers (MH and RP) were discussed with a third reviewer (CM) and a consensus opinion accepted. Elements of deliberate practice were defined as: (a) explicit structured goal setting, (b) objective assessment method, (c) supervision by a trainer, (d) feedback that was specific and individualized, (e) repetitive practice. The labels for trainee surgeons vary between countries and specialties, so for clarity the term “trainee surgeon” was used universally.

Data Analysis

In anticipation of varied methodologies and reporting of results, a pragmatic approach was adopted for the synthesis of mixed qualitative and quantitative data. A
descriptive summary of the key findings and common themes was provided alongside an objective appraisal of each study. Methodological quality was assessed using the Medical Education Research Study Quality Instrument (MERSQI), outcomes were classified using Kirkpatrick’s hierarchy and the strength of the evidence was graded using the BEME grading.

RESULTS

Study Context and Design

Ten of the 17 studies were conducted in the United States of America, 4 in Canada, 3 in the United Kingdom and 1 in Belgium. A range of surgical procedures were examined, the most common being endoscopic, including joint arthroscopy, laparoscopy, and hysteroscopy. There were a mix of study designs with 6 described as prospective randomized control trials (RCT). One of 6 RCTs described no process for randomization and in the same study used novice medical students as a control group for senior trainee surgeons undertaking the intervention. Seven studies used a pre- and post-test design. Across all 7 of these studies, participants underwent baseline testing before receiving the deliberate practice based SBME intervention and then underwent repeated testing immediately afterwards to evaluate for any change in performance outcomes. Two studies compared the outcomes of trainee surgeons with expert surgeons. Three studies did not have a control or comparison group. The evaluation of methodological quality (MERSQI) across the included studies is presented in Table 1.

Elements of Deliberate Practice

Fourteen studies demonstrated evidence of explicit and structured goal setting prior to deliberate practice based SBME interventions, as well as before assessment of performance outcomes. Eight studies described whole-task demonstrations by experts with commentary and instruction, either live or via video. Six studies described a deconstruction of the skill into procedural steps and provided participants with detailed instruction for undertaking the required technique, albeit without an accompanying visual demonstration. One study objectively assessed

<table>
<thead>
<tr>
<th>Study Details and Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citation details: Title/Authors/year/journal</td>
</tr>
<tr>
<td>Country</td>
</tr>
<tr>
<td>Context: Aims/purpose</td>
</tr>
<tr>
<td>Study population specifics and sample size</td>
</tr>
<tr>
<td>Methodology</td>
</tr>
<tr>
<td>Duration of intervention and repetition #</td>
</tr>
<tr>
<td>Details/Results extracted from study</td>
</tr>
<tr>
<td>Outcomes assessment</td>
</tr>
<tr>
<td>Key findings that relate to aims of review:</td>
</tr>
<tr>
<td>Effectiveness:</td>
</tr>
<tr>
<td>Evidence of skill retention:</td>
</tr>
<tr>
<td>Design of DP approach:</td>
</tr>
<tr>
<td>Modified Kirpatrick level (1-4b)</td>
</tr>
<tr>
<td>BEME strength (1-5)</td>
</tr>
<tr>
<td>MERSQI Scale</td>
</tr>
</tbody>
</table>

FIGURE 2. Data extraction form.
<table>
<thead>
<tr>
<th>Study</th>
<th>Recruited Participants</th>
<th>Design</th>
<th>MERSQI</th>
<th>Kirkpatrick Level</th>
<th>BEME Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kloek 2014</td>
<td>16 PGY3&4 ophthalmic surgery trainees</td>
<td>Observational</td>
<td>13.0</td>
<td>2.0</td>
<td>2</td>
</tr>
<tr>
<td>Tan 2018</td>
<td>22 PGY1&2 trainees — 12 Emergency medicine & 20 Gen Surg</td>
<td>RCT</td>
<td>13.0</td>
<td>3.0</td>
<td>3</td>
</tr>
<tr>
<td>Hakim 2018</td>
<td>9 PGY4 ophthalmic surgery trainees</td>
<td>Observational</td>
<td>14.0</td>
<td>1.0</td>
<td>3</td>
</tr>
<tr>
<td>Crochet 2011</td>
<td>26 novice trainees with no prior practical experience of procedure: 15 final year medical students and 11 PGY1/2 trainees</td>
<td>RCT</td>
<td>15.5</td>
<td>3.0</td>
<td>4</td>
</tr>
<tr>
<td>Hashimoto 2015</td>
<td>20 PGY1-3 trainees with no prior practical experience of procedure</td>
<td>RCT</td>
<td>16.0</td>
<td>3.0</td>
<td>4</td>
</tr>
<tr>
<td>Rackow 2012</td>
<td>37 surgical trainees; 19 PGY1/2 and 18 PGY3/4 from 3 hospital sites</td>
<td>Comparison</td>
<td>13.5</td>
<td>2.0</td>
<td>2</td>
</tr>
<tr>
<td>Hsu 2016</td>
<td>9 4th year medical students with expressed interest in surgical specialty</td>
<td>Pre-/Post-test</td>
<td>12.0</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>De Win 2013</td>
<td>22 final year medical students with expressed interest in surgical specialty</td>
<td>Pre-/Post-test</td>
<td>12.0</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>Palter 2014</td>
<td>16 PGY1/2 trainees</td>
<td>RCT</td>
<td>15.0</td>
<td>3.0</td>
<td>3</td>
</tr>
<tr>
<td>Nesbitt 2013</td>
<td>10 fourth year medical students compared to 11 senior gen surg trainees with >3 years experience</td>
<td>Comparison</td>
<td>13.5</td>
<td>2.0</td>
<td>2</td>
</tr>
<tr>
<td>Palatini 2018</td>
<td>5 surgeons with no prior experience of microvascular techniques</td>
<td>Pre-/Post-test</td>
<td>12.0</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Price 2011</td>
<td>39 PGY1/2 trainees with no prior practical experience of procedure</td>
<td>RCT</td>
<td>16.0</td>
<td>3.0</td>
<td>3</td>
</tr>
<tr>
<td>Wayne 2008</td>
<td>40 PGY3 medicine trainees</td>
<td>Pre-/Post-test</td>
<td>13.0</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Teitelbaum 2014</td>
<td>10 senior surgical trainees; 5 PGY5, 2 PGY4 & 3 PGY3</td>
<td>Pre-/Post-test</td>
<td>14.0</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Yeo 2015</td>
<td>25 surgically naive 1st year medical students</td>
<td>Pre-/Post-test</td>
<td>10.0</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Feins 2017</td>
<td>27 PGY1 cardiothoracic trainees</td>
<td>Observational</td>
<td>13.0</td>
<td>1.0</td>
<td>2</td>
</tr>
<tr>
<td>Rowse 2015</td>
<td>25 PGY1 general surgery trainees</td>
<td>Pre-/Post-test</td>
<td>9.0</td>
<td>1.5</td>
<td>2</td>
</tr>
</tbody>
</table>

MERSQI, medical education research study quality instrument; De, design; S, sampling; Da, data; SV, score validity; A, analysis; O, outcomes.
participants performing a laparoscopic procedure on a live patient in the operating room and used the breakdown of these scores to highlight specific areas of performance that fell below the accepted standard. Trainers then provided individualized goals for subsequent simulation-based training.46

Fifteen studies objectively measured change in performance outcomes of a practical skill. The most frequently used scoring systems were the Objective Structured Assessment of Technical Skills with or without a procedure-specific rating scale or a bespoke checklist created through a process of expert discussion. Nine studies undertook assessment prior to the deliberate practice based SBME intervention38-41,45-50 with 6 measuring outcomes after the intervention only.36,37,43,44,45,52 Twelve studies were observed by a trainer or senior surgeon.36,37,39,40,41,43-45,46,49,50,52 The ratio between supervisor and trainee surgeon varied from 1:1 to 1:25, that is, one-to-more than one trainee, across these studies. Nine studies described a process of a trained observer giving individualized feedback or coaching on the simulator directed towards improving performance.36,39,40,43,44,45,49,50,52 Five studies defined feedback as digital outcomes generated by the simulator that were provided for participants at the end of each repetition, but this did not include any technical coaching.38,42,46,48,51

All studies described repetitive practice as part of the deliberate practice based SBME intervention. Five studies described a mastery-learning approach, where participants continued practicing until a preset performance standard was achieved.38,40,48,52 The remaining twelve described a traditional approach where participants received the same number of turns or duration on the simulator.36,37,40,43-45 The frequency and duration of training varied between studies. Four studies provided massed practice within a single training session35,36,38,46 whereas the other 13 studies provided distributed practice across multiple sessions over a longer period of time.37,39,40,42-45,47-49,50,52 A summary of the deliberate practice elements described across studies is presented in Table 2.

Outcomes
All seventeen studies demonstrated a significant change in participant-level outcomes following the deliberate practice based SBME intervention. Five studies explicitly reported a change in outcomes over more than one time point. Four of these studies demonstrated no evidence of skill decay between 1 and 7 months.36,39,41,52 One study demonstrated a negative change in performance outcomes 27 days from baseline measurement, despite participants demonstrating skills measured against an expert standard at the end of training.51 One study described a trend of transient decline in skills performance between sessions, spaced 1 week apart, however there was evidence of recovery and further improvement across training sessions.45

One study assessed patient-level outcomes.43 In this study, a deliberate practice based SBME intervention involving part-task training on an eye model and a synthetic simulator prepared trainees to perform the final procedure under supervision with 100% success. No intraoperative complications among participants who received the intervention were noted and there was significant reduction in intraocular pressures as well. Two RCT studies demonstrated transfer of skills learned following a deliberate practice based SBME intervention into the clinical environment.46,47 One of these studies described improved performance demonstrated during laparoscopic cholecystectomy in the operating theatre among participants who engaged in deliberate practice. In the other of these studies, improved performance on a microvascular anastomosis performed on a living porcine specimen was also demonstrated by participants receiving the deliberate practice based SBME intervention. Fourteen studies assessed outcomes at a lower Kirkpatrick level, with improvements in skills (n = 12) or knowledge and confidence (n = 2) as a result of the training intervention, but no evidence of transfer of these skills into the workplace environment.36-42,44,45,48,52 A summary of study outcomes and how these relate to Kirkpatrick’s hierarchy model can be seen in Table 1.

Study Quality
The strength of each paper was assessed using the BEME grading, taking into consideration the methodology and design, limitations of the study, stated conclusions, and how these related to the published results. Overall quality of the published literature was middling to poor, with only 2 studies satisfying BEME grade 4, with results that were clear and very likely to be true. Results are summarized in Table 1 and described in more detail in the supplementary table.

DISCUSSION
This research identified that deliberate practice informed SBME interventions included in this study appeared effective for developing surgical skills amongst trainee surgeons, but that the strength of these conclusions was limited by the quality of studies. Analysis of the instructional design elements (structured goal setting, objective assessment, supervision, feedback, and repetitive practice) were inconsistent within, and across the training activities. The majority of research studies used a pre- and post-test design for measuring skills change with
<table>
<thead>
<tr>
<th>Study and if DP Specified?</th>
<th>Structured Goals</th>
<th>Objective Assessment</th>
<th>Observer</th>
<th>Specific & Individualised Feedback</th>
<th>Repetitive Practice</th>
<th>Objective Reassessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kloek 2014</td>
<td>✓ Deconstructed procedure into key steps and structured training to focus on each step individually.</td>
<td>x</td>
<td>x</td>
<td>✓ Only digital feedback of sim component</td>
<td>✓ mean 23 (range 0-50) hrs</td>
<td>x no skills assessment</td>
</tr>
<tr>
<td>Tan 2018</td>
<td>✓ Checklist of key steps, no time limit, repeat until independent</td>
<td>x</td>
<td>✓ 1:1</td>
<td>✓ Coaching through steps</td>
<td>✓ Continued until competent</td>
<td>✓ Subsequent real procedure against 15-point checklist</td>
</tr>
<tr>
<td>Hakim 2018</td>
<td>✓ Deconstructed procedure into key steps and structured training to focus on each step individually.</td>
<td>x</td>
<td>✓ 1:1</td>
<td>✓</td>
<td>✓ Continued until competent</td>
<td>✓ Assessment of IOP and objective positioning of implant by expert</td>
</tr>
<tr>
<td>Crochet 2011</td>
<td>✓ Attended a training seminar with introduction to procedure and demonstration, then specific tasks set for the individual based on performance.</td>
<td>✓ OSATS-derived GRS & PSRS</td>
<td>✓ 1:1</td>
<td>✓ Specific feedback of marks and why each was awarded</td>
<td>✓ assigned to areas of poor performance</td>
<td>✓ OSATS-derived GRS and PSRS</td>
</tr>
<tr>
<td>Hashimoto 2015</td>
<td>✓ Attended a training seminar with introduction to procedure and demonstration, then specific tasks set for the individual based on performance</td>
<td>✓ OSATS-derived GRS & PSRS</td>
<td>✓ 1:1</td>
<td>✓ Specific feedback of marks and why each was awarded</td>
<td>✓ Assigned to areas of poor performance</td>
<td>✓ OSATS-derived GRS and PSRS</td>
</tr>
<tr>
<td>Rackow 2012</td>
<td>x</td>
<td>x</td>
<td>✓ 1:1</td>
<td>x No feedback described</td>
<td>✓</td>
<td>✓ OSATS in dry lab setting</td>
</tr>
<tr>
<td>Hsu 2016</td>
<td>x</td>
<td>✓ Knot integrity and peak forces measured across 10 throws</td>
<td>x</td>
<td>✓ Digital force outcomes but no technical coaching</td>
<td>✓</td>
<td>✓ Knot integrity and peak forces</td>
</tr>
<tr>
<td>De Win 2013</td>
<td>✓ Cognitive preparation with step-by-step video, live demo, explanation</td>
<td>x</td>
<td>✓ 1:6</td>
<td>✓ Constructive feedback and correction of technique</td>
<td>✓</td>
<td>✓ Validated objective assessments of proficiency</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Study and if DP Specified?</th>
<th>Structured Goals</th>
<th>Objective Assessment</th>
<th>Observer</th>
<th>Specific & Individualised Feedback</th>
<th>Repetitive Practice</th>
<th>Objective Reassessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palter 2014</td>
<td></td>
<td>√ Breath goal = improve outcomes on LC sim. Specific tasks set for the individual based on performance</td>
<td>√ OSATS GRS, modified OSATS & PSRS</td>
<td>× Digital feedback on outcomes (Real-time feedback from computer)</td>
<td>√ Up to 1 hr until passing standard achieved</td>
<td>√ OSATS GRS</td>
</tr>
<tr>
<td>Nesbitt 2013</td>
<td></td>
<td>1:1 detailed instruction of the technique required, with goals to master basic skills before progressing to more advanced techniques</td>
<td>×</td>
<td>1:1</td>
<td>√ Specific coaching of practical and technical aspects as required</td>
<td>√ Repetitions across 10-14 h and 12+ simulated procedures</td>
</tr>
<tr>
<td>Pafitani 2018</td>
<td></td>
<td>Expert demonstration of each step of the procedure prior to training</td>
<td>×</td>
<td>×</td>
<td>× HMA outcomes but no technical coaching</td>
<td>√ Repetitions carried out until proficient (mean 8)</td>
</tr>
<tr>
<td>Price 2011</td>
<td></td>
<td>Didactic instruction on technique & 3 practices with expert instruction</td>
<td>√ OSATS, Time & End-product evaluation</td>
<td>×</td>
<td>× Self-directed practice</td>
<td>√ 10 unsupervised repetitions over 2 weeks</td>
</tr>
<tr>
<td>Wayne 2008</td>
<td></td>
<td>First 1 hr = step-by-step expert demonstration</td>
<td>√ 25 step checklist MCQ written exam</td>
<td>1:2 - 4</td>
<td>√ Directed feedback given</td>
<td>√ Up to 3 hours allowed for repetitive practice</td>
</tr>
<tr>
<td>Feins 2017</td>
<td></td>
<td>Didactic reading of technique & instructional video of procedure</td>
<td>√ Previously validated objective score of performance on simulator</td>
<td>1:2</td>
<td>√ Immediate feedback on performance</td>
<td>√ Weekly 1 h sessions until participants met mastery standard</td>
</tr>
<tr>
<td>Yeo 2015</td>
<td></td>
<td>Online module including step-by-step description and video followed by demo on simulator</td>
<td>√ Hand motion analysis</td>
<td>×</td>
<td>× Digital feedback from HMA software; performance related to expert standard</td>
<td>√ 3-4 sessions of 30-60 mins each, spaced 6 weeks apart</td>
</tr>
<tr>
<td>Feins 2017</td>
<td></td>
<td>Sessions explained to participants with explicit goals and objectives</td>
<td>√ 21 task assessment tool based on modified OSATS with 5-point Likert scale</td>
<td>Variable, up to 1:4</td>
<td>√ “expert coaching”</td>
<td>√ 3-4 h sessions scheduled weekly where possible.</td>
</tr>
<tr>
<td>Rowse 2015</td>
<td></td>
<td>Instructional video outlined step-by-step technique</td>
<td>×</td>
<td>1:25</td>
<td>× no reported feedback</td>
<td>√ 2 × 3 h sessions on consecutive weeks</td>
</tr>
</tbody>
</table>

DP, deliberate practice; IOP, intraocular pressure; OSATS, objective structured assessment of technical skills; GRS, global rating scale; PSRS, procedure specific rating scale.
few studies actually evaluating deliberate practice with any other specified instructional designs. There was little evidence from the review that deliberate practice operationalized as a SBME intervention across the studies led to skills retention beyond 30 days although low numbers of participants was commonplace and the quality of research studies, as demonstrated by the MERSQI scores and BEME grade, was modest.

This research was undertaken against the backdrop of the traditional Halstedian model of surgical training toward one influenced by working time regulations and less direct observation of performance or supervision in theatre. Whilst the elements of deliberate practice align with the philosophy and principles of the Halstedian model, there was insufficient evidence in this review that the effectiveness of SBME extended beyond the benefits of repeated practice. Although opportunities to repeat and refine skills are important in surgical training, expertise development in surgery also requires attention to virtues such as craftsmanship and workmanship. In the absence of a skilled trainer providing direct observation on performance, training risks becoming a tick-box exercise and SBME-interventions function as a means to an end. Likewise, surgical training driven by SBME risks becoming reduced to technical skills development only, whereas the development of surgical expertise requires a diversity of opportunity and experience as part of curriculum that scaffold individual surgeon development.

Although deliberate practice is a specific type of training, supervised and guided by an expert, the underpinning principles are developed from the expertise performance approach. This approach proposes that it is necessary to identify reproducibly superior performance in the real world and then to capture and reproduce this performance. The Halstedian model provided trainees opportunities for direct observation so individuals were able to witness this superior performance, and in some cases attempt to reproduce it receiving direct feedback in the process. Not all SBME interventions labeled as deliberate practice are designed so that experts observe the performance of surgical trainees on the simulator. Without opportunity to practice surgical skills in theatre, the critical steps necessary for performing surgery independently in the setting of uncertainty may not be learnt on a SBME intervention—a critical aspect of the expertise performance approach. Likewise, the opportunity to reflect over errors is necessary for improving future performance. In order to satisfy requirements of deliberate practice SBME interventions must provide feedback as part of the instructional design. Adequate debriefing focusing on errors and potential strategies for improving performance in the future should involve identifying the occasions when initial problem-solving or decision-making lead to less than ideal choices or outcomes.

Despite research suggesting SBME interventions are effective, evidence of skills retention over the short-, or long-term is lacking. The maxim “practice makes perfect” may be inaccurate and inappropriate for surgical skills training using SBME interventions for a number of reasons, not least because individuals without direct observation from experts may be practicing the wrong thing repeatedly. Deliberate practice attempts to encourage skill acquisition at least in part through repetition. There is evidence that this approach can lead to improved outcomes in comparison with no intervention, however learners require immediate and direct feedback from an expert coach which may not always be possible in some training contexts.

Much of the research involving SBME in a surgical training context involves small participant numbers despite the significant number of potential surgical trainees available across the various subspecialty training programmes. The quality of the research studies as evaluated by the MERSQI was low reflecting a persistent and wider issue about the conduct of educational research in healthcare. The challenge with medical or healthcare professions education research is both philosophical and practical. Philosophically, the research assumptions made about knowledge and the reality of the natural world in a healthcare context is relatively consistent within the profession and across the various clinical subspecialties. However, these assumptions remain when researching educational outcomes, albeit in a healthcare professions context, despite the nature of both knowledge and reality contested to be subjective rather than objective. As a consequence, research design and methodology may not necessarily be appropriate, leading to the inconsistent use of methods and over-interpretation of findings in some cases. More quality research is necessary with more consideration of the way terms are operationalized in the real world, with more consideration for the intersubjectivity across both researchers and participants.

There are a number of implications for existing SBME practice in surgical education from this review, and recommendations can be seen in Table 3. First, the instructional

<table>
<thead>
<tr>
<th>TABLE 3. Educational Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational Recommendations</td>
</tr>
<tr>
<td>1. Ensure trainees have ample opportunity to witness expert performance in clinical environment</td>
</tr>
<tr>
<td>2. Produce a personalized learning plan for trainees based on supervised clinical practice</td>
</tr>
<tr>
<td>3. Provide opportunity for supervised deliberate practice through SBME</td>
</tr>
<tr>
<td>4. Frequently reassess clinical performance and revise learning plans</td>
</tr>
</tbody>
</table>
design of SBME interventions should be made explicit by the
teacher, and for the learner. The use of SBME interventions
should be part of a wider programme of education where
training opportunities are carefully personalized to the in-
dividual needs of the surgical trainee. In the authors’ opinion
the current evidence supports the use of SBME with deliber-
ate practice in developing technical skills by means of super-
vised repetition and directed feedback, however a key
element remains the identification of expert performance
and this is ideally suited to observing and assisting surgical
cases in the operating room. A hybrid approach may be opti-
mal, with a curriculum of SBME embedded within a clinical
placement and supporting learning objectives that are tai-
lored to individual trainees. The challenge for surgical train-
er is to find the time to watch surgical trainees during
SBME interventions so authentic feedback can be given
about specific performance task as well as overall develop-
ment as surgeons. The outcomes from SBME interventions
should focus more on skills retention and decay as well as
transfer into the operating theatre given the purpose of the
training is to develop independent surgical expertise.
Finally, surgical trainers should underpin SBME interventions
with opportunities to engage with deliberate practice since
opportunities for repetition combined with regular assess-
ment and frequent feedback is associated with improved
educational outcomes.

REFERENCES

training opportunities in Britain and South Africa.

2. Lambert TW, Smith F, Goldacre MJ. The impact of the European Working Time Directive 10 years on:
views of the UK medical graduates of 2002 surveyed in
2054270416632703.

enhanced simulation for health professions educa-
tion: a systematic review and meta-analysis. JAMA.

shoulder surgical simulation training curriculum: transfer reliability and maintenance of skill over

5. Waterman BR, Martin KD, Cameron KL, Owens BD,
Belmont PJ. Simulation training improves surgical
proficiency and safety during diagnostic shoulder
arthroscopy performed by residents. Orthopedics.
2016;39:e479–e485.

6. Cannon WD, Garrett WE, Hunter RE, et al. Improv-
ing residency training in arthroscopic knee surgery
with use of a virtual-reality simulator. A randomized

7. Seymour NE, Gallagher AG, Roman SA, et al. Virtual
reality training improves operating room perform-
463–464.

8. Gordon JA, Shaffer DW, Raemer DB, Pawlowski J,
Hurford WE, Cooper JB. A randomized controlled
trial of simulation-based teaching versus traditional
instruction in medicine: a pilot study among clinical

9. Wang CL, Schopp JG, Petscavage JM, Paladin AM,
Richardson ML, Bush WH. Prospective randomized
comparison of standard didactic lecture versus high-
fidelity simulation for radiology resident contrast
reaction management training. Am J Roentgenol.
2011;196:1288–1295.

10. Mabrey JD, Reingig KD, Cannon WD. Virtual reality

11. Nicol LG, Walker KG, Cleland J, Partridge R, Moug
SJ. Incentivising practice with take-home laparo-
scopic simulators in two UK core surgical training
programmes. BMJ Simul Technol Enhanced Learn
from https://10.1136/bmjstel-2016-000117.

12. Dongen KWvan, Wal WAvan der, Rinkes IHMB,
Schijven MP, Broeders IAMJ. Virtual reality training
for endoscopic surgery: voluntary or obligatory?

13. Gostlow H, Marlow N, Babidge W, Maddern G. Sys-
tematic review of voluntary participation in simula-
tion-based laparoscopic skills training: motivators
and barriers for surgical trainee attendance. J Surg

14. Milburn JA, Khera G, Hornby ST, Malone PSC, Fitz-
gerald JEF. Introduction, availability and role of sim-
ulation in surgical education and training: review of
current evidence and recommendations from the

15. Ker J, Hogg G, Maran N, Walsh K. Cost effective sim-
ulation. Cost effectiveness in medical education.

SUPPLEMENTARY INFORMATION

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.jsurg.2020.11.008.