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Abstract Fractal analysis has emerged as a powerful tool for characterizing 
irregular and complex patterns found in the nervous system. This characterization 
is typically applied by estimating the fractal dimension (FD), a scalar index that 
describes the topological complexity of the irregular components of the nervous 
system, both at the macroscopic and microscopic levels, that may be viewed as 
geometric fractals. Moreover, temporal properties of neurophysiological signals 
can also be interpreted as dynamic fractals. Given its sensitivity for detecting 
changes in brain morphology, FD has been explored as a clinically relevant marker 
of brain damage in several neuropsychiatric conditions as well as in normal and 
pathological cerebral aging. In this sense, evidence is accumulating for decreases in 
FD in Alzheimer’s disease, frontotemporal dementia, Parkinson’s disease, multiple 
sclerosis, and many other neurological disorders. In addition, it is becoming 
increasingly clear that fractal analysis in the field of clinical neurology opens the 
possibility of detecting structural alterations in the early stages of the disease, which 
highlights FD as a potential diagnostic and prognostic tool in clinical practice. 
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16.1 Introduction 

Fractals are geometric objects that are self-similar at distinct scales and can 
be found widespread in nature, appearing in many research domains, including 
dynamical systems, physics, biology, and behavioral sciences [61]. In recent years, 
fractal analysis has emerged as a powerful tool for characterizing irregular and 
complex patterns found in the nervous system. Specifically, the concept of fractal 
geometry objectively analyzes and quantifies the intricate structures conforming 
the topological and functional patterns of the human brain, elucidating how it 
works at a system’s level. Fractal analysis has thus become a promising method 
to aid physicians and scientists in the diagnosis of certain neurological conditions, 
prediction of clinical outcomes, classification between pathological states, and 
detection of disease progression in the brain, with the ultimate goal of aiding novel 
therapeutic strategies and preventative medicine. 

In the field of neuroscience, fractal analysis is used to measure the scaling 
properties inherent to neurological systems (e.g., neuroanatomical structures at the 
micro, meso-, and macroscale) and is typically applied by estimating the fractal 
dimension (FD), a scalar index that describes the topological complexity of the 
object under investigation. A wide range of neural structures—from neurons to 
complex networks—can be characterized as structural or dynamical fractals to 
quantify their intrinsic complexity. In this sense, the spatial properties of irregular 
components of the nervous system, both at the macroscopic and microscopic levels, 
may be viewed as geometric fractals, while temporal properties of neurophysiologi-
cal signals should be interpreted as dynamic fractals [14, 15]. This chapter provides 
an updated overview of the applications of fractal analysis in human neuroimaging 
and neurodiagnostics, with a particular focus on clinical neurology. 

16.2 Geometric Fractal Analysis Applied to Neuroscience 

The convoluted structure of the cerebral cortex poses the problem of how to 
characterize its morphological complexity quantitatively [19]. Several methods 
and tools are available for the quantitative measurement of brain volume [34, 62, 
66]. However, different factors including the type of MRI machine, brain volume 
artifacts, clinicopathological conditions, and variability among the standardized 
protocols may yield important variations in volume estimates [3]. As the field of 
neuroscience evolves, significant efforts have been made to develop new techniques 
to analyze the brain and to complement the existing ones, providing crucial knowl-
edge on functionality as well as information surrounding the structural alterations, 
like those seen in neurological diseases. In this sense, one of the most promising 
indices is the fractal dimension (FD), a measure that has long been applied to 
estimate the topological complexity of natural structures [42] and that has been 
employed to evaluate brain complexity across multiple scales [17, 25, 45].
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Fig. 16.1 Illustration of the box-counting method of calculating fractal dimensionality. Top: 
visualization of the number of boxes necessary to contain the brain structure across different box 
sizes. Bottom: Plot of the power-law relationship between the number of boxes (count) and box 
size, followed by a conversion to log–log space. The slope of line for this count-size relationship 
in log–log space represents the fractal dimensionality estimate of the structure. (Figure reprinted 
from Madan [36] with permission) 

Given its sensitivity for detecting changes in brain morphology, FD has been 
explored as a clinically relevant marker of brain damage in several neuropsychiatric 
conditions as well as in normal and pathological cerebral aging [40, 55]. There are 
several different methodologies to compute the FD index empirically from structural 
MRI data. One of the most commonly applied methods is the box-counting 
algorithm, which is suitable to study the cerebral cortex [25, 38] and is illustrated in 
Fig. 16.1. Nonetheless, other approaches to measure cortical complexity through FD 
include techniques based on the Fourier transform, surface dilation, and spherical 
harmonic reconstructions [6, 18, 39, 46, 65]. In this sense, significant efforts to 
elucidate how much FD is related to other indices such as thickness and gyrification 
are of special interest to characterize the potential value of this measure for new 
insights into cortical architectural features [38, 53]. It is worth highlighting that 
several studies reported FD estimates as sensitive to multiple aspects related to 
data acquisition and processing, which may cause these research outcomes to be 
heterogeneous and therefore not directly comparable [45]. Nonetheless, formal 
evaluations have provided evidence that FD has higher test–retest reliability than 
conventional measures of brain structure [39], as well as is more robust to head 
motion-related artifacts [35]. This chapter reviews and summarizes recent literature 
on the application of FD to describe cortical brain complexity in healthy and clinical 
individuals, as well as to outline future lines of research in this field.



316 L. Díaz Beltrán et al.

16.3 Relationship Between Fractal Dimension and Healthy 
Subjects 

16.3.1 Aging and Development 

A wide range of computational methods for calculating FD have been used 
to perform different experiments involving age, development stage, and clinical 
condition, among others. Generally, these research analyses focus on how cortical 
complexity varies during development and aging in nonpathological situations. For 
example, in addition to the studies described in Esteban et al. [17], Reishofer et 
al. [55] concluded that alterations of WM complexity can be reliably measured 
with fractal analysis in a large cohort of healthy aging subjects. This outcome 
suggests that FD may be considered a valuable biomarker for identifying WM 
structural changes in the human brain. More recently, Marzi et al. [43] conducted 
machine learning models for individual age prediction in two large datasets of 
healthy individuals. Their findings showed that the selections of the interval of 
spatial scales were relevant for a more suitable characterization of fractal properties 
of the cerebral cortex, as well as for a more accurate estimation of FD. Moreover, 
this work reported a monotonic reduction in structural complexity of the cortex 
with age during almost all the lifetime. Furthermore, an overall reduction in FD 
with age is reported in several studies that analyzed this index in healthy adults 
and elderly subjects [22, 28, 31, 32, 37, 38, 40, 43, 44]. Interestingly, a negative 
association between age and FD has been described at different spatial levels, 
including the whole brain [38, 40, 43, 44], the left dorsolateral prefrontal cortex 
[32], and in the posterior wall of the right central sulcus [28]. A comparative FD 
analysis was performed by [22] in different age groups, where altered values of FD 
were observed between young adults (<45 years), middle adults (45–60 years), and 
old adults (>65 years); more precisely, FD decrease was reported from young to 
middle age in the bilateral frontal, left frontal, and right limbic lobes, while from 
middle to old age, the FD reduction was observed in the bilateral temporal, parietal, 
and left limbic lobes, respectively. Nevertheless, an increase in FD estimates of the 
left middle orbitofrontal cortex region was highlighted from young to middle age 
and of the occipital lobe area from middle to old age groups. 

Furthermore, two longitudinal studies yielded similar results, observing a nega-
tive relationship between FD and age ([31, 37]; reviewed in [45]). In comparison to 
other cortical measures, such as cortical thickness or gyrification index, FD appears 
to be more sensitive to age-related differences. Last, regarding gender differences, 
two studies reported that the reduction in FD was faster and more significant in 
males than in females [22, 28]. Similarly, one study in a large sample from the 
UK Biobank observed differential patterns of age-related changes in cortical FD 
according to sex, with relatively more age-affected regions in males [48].
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16.3.2 Cognition 

With respect to cognitive functioning, as reported by Meregalli et al. [45], several 
studies [20, 24, 31, 44, 47] have established that higher FD values were related 
to better cognitive performance, except for Lu et al. [32], who did not find 
any relationship between FD and scores derived from the Mini-Mental State 
Examination (MMSE). Im et al. [20] reported a positive relation between FD of the 
whole brain and years of education, as well as between FD of the right hemisphere 
and IQ in a group of healthy young individuals. More recently, Liu et al. [31] 
analyzed the association of FD values and cognition in subjects ranging from 70 to 
90 years old and reported significant correlations between FD and global cognition 
in distinct brain areas, including the bilateral temporal lobe, left occipital lobe, 
and several subcortical structures, in line with the results previously obtained by 
Mustafa et al. [47] for whole-brain fractal analysis. Additionally, Kinno et al. [24] 
observed positive correlations between FD of several frontotemporal brain areas 
and memory function in a cohort of older subjects (over 75 years old), assessed by 
using the scores obtained in the Wechsler Memory Scale-Revised (WMS-R). On the 
other hand, McDonough and Madan [44] evaluated the association among FD, brain 
activity, and cognitive functioning in middle-aged and older subjects who were at 
risk of dementia. Their findings yielded that decreased FD was linked to higher brain 
activity during memory retrieval in several posterior brain areas and that this pattern 
was related to cognitive dysfunction. 

Finally, Aguillard et al. [1] investigated patterns that emerged in brain signals 
in response to external stimulating image regimes recorded in a sample of young 
adults (18–22 years) that were analyzed using nonlinear techniques. Their results 
showed that subjects who were visually stimulated by a series of mixed images (a 
randomized set of neutrally or negatively arousing images) exhibited a significantly 
higher fractal dimension compared to subjects visually triggered by pure images 
(an organized set of either all neutral or all negatively arousing images). In addition, 
their findings also revealed that subjects who performed better on memory recall 
showed higher fractal dimension computed from the electroencephalogram. 

16.4 Fractal Analysis and Neurological Disorders 

Recent studies have started to compare differences in FD values between healthy 
control participants and patients with neurological or psychiatric conditions. Here, 
we summarize some relevant researches carried out in this field, in addition to 
the investigations outlined in Esteban et al. [17]. Overall, only a few have been 
conducted so far in these conditions and, therefore, the results obtained are limited 
and heterogeneous. However, the great majority reported the presence of global or 
regional FD changes in the clinical population, highlighting the sensitivity of fractal 
analysis across a wide spectrum of neuropsychiatric disorders [45].
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16.4.1 Alzheimer’s Disease (AD) 

Different studies showed a general decrease in FD in patients with AD in com-
parison to healthy individuals. In particular, Villamizar et al. [63] performed a 
comparative analysis between the FD of neuroimages from healthy control subjects 
and AD patients. Their results showed lower general FD values in AD patients 
related to neurodegeneration. Also, Nobukawa et al. [50] applied Higuchi’s fractal 
algorithm to evaluate specific temporal fractal properties. Their work established a 
comparison between the values of the temporal scale-specific FD of AD patient and 
healthy control groups. Their findings demonstrated that the AD group displayed 
reduced fractality at both slow and fast temporal scales; furthermore, they were able 
to correlate fractality at fast temporal scale with cognitive decline, which may be 
used as a basis for a useful methodology to characterize temporal neural dynamics 
in AD or other neurodegenerative diseases. 

On the other hand, Nicastro et al. [49] and Ruiz de Miras et al. [57] characterized 
FD using spherical harmonic reconstruction, both reporting a decrease in whole-
brain FD in AD patients. Regarding regional specificity, both studies showed 
reduced FD values in AD patients when compared to healthy subjects, particularly 
in areas embracing the insula, the temporal medial lobe, and the posterior cingulate 
cortex. In this line, Ruiz de Miras et al. [57] also observed differences in this index 
in the temporal pole, whereas Nicastro et al. [49] identified FD values variances 
between AD patients and controls in the precentral and postcentral gyri. 

Moreover, Ruiz de Miras et al. [57] also assessed FD in patients presenting 
mild cognitive impairment (MCI), detecting that subjects who would develop 
manifest AD in the following 4 years exhibited lower white matter FD values than 
non-converter MCI subjects, particularly in the medial frontal lobe. By contrast, 
McDonough and Madan [44] calculated FD in subjects at risk for dementia without 
associated cognitive impairment and reported no relation between FD values and 
AD risk. 

Finally, Nicastro et al. [49] and Ruiz de Miras et al. [57] also revealed positive 
correlation analyses regarding FD and cognitive performance, such that higher 
cognitive impairments were associated with lower FD estimations. 

16.4.2 Frontotemporal Dementia 

One of the main studies assessing FD in patients with frontotemporal dementia 
(FTD) was performed by Nicastro et al. [49], showing an FD decrease in patients 
when compared to healthy controls, both on the whole-brain level and in areas 
such as the insula, posterior cingulate cortex, and precentral and post-central 
gyri. They also conducted correlation analyses, detecting an association between 
memory, language, and fluency impairment, and decreased FD in the left insula, 
inferior temporal, and medial orbitofrontal gyri. Likewise, Sheelakumari et al. [59]
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investigated FD in two subtypes of FTD: behavioral variant FTD (bvFTD) and 
primary progressive aphasia (PPA). An overall reduction in FD was observed in 
both subtypes when compared with healthy individuals. In addition, whereas PPA 
appeared to be characterized by low FD in the left hemisphere of the brain, bvFTD 
was associated with an FD decrease in the right hemisphere, potentially linked 
to the behavioral manifestation of FTD. This hypothesis was supported by the 
identification of a negative correlation between the FD of the right hemisphere of 
bvFTD patients and their score on the frontal system behavior scale, which showed 
that less complexity was related to worse clinical status. Finally, Ziukelis et al. [68] 
provide a systematic review of fractal analysis in neurodegenerative diseases and 
dementia. 

16.4.3 Multiple Sclerosis 

Apart from the studies highlighted in Esteban et al. [17], research by Roura et 
al. [56] applied cortical FD as calculated by the box-counting method for the 
prediction of disability worsening in a cohort 146 of subjects suffering from 
relapsing-remitting multiple sclerosis (RRMS) with up to 5 years of clinical follow-
up. Fractal analysis of the brain structures was conducted to evaluate whether 
significant differences exist between RRMS patients and healthy controls. Their 
findings unveiled that whole brain, cortical and deep grey matter FD, and whole 
brain, cortical and white matter FD lacunarity differed between the two cohorts. 
Furthermore, a longitudinal analysis assessing the 5-year follow-up revealed a 
significant reduction in fractal dimension and an increase in lacunarity. The authors 
applied linear mixed models that fitted the distribution of the annual variations 
in the FD and lacunarity of the brain areas under study in order to evaluate the 
changes that may appear in brain fractal geometry in relation to the duration of the 
disease. The models exhibited significant changes in the cortical and white matter 
FD and for cortical, grey matter, and white matter lacunarity in association with the 
disease duration. In particular, a decrease in the cortical FD, white matter FD, and 
grey matter FD was found. Last, a multivariate analysis was performed considering 
the relationship between brain volume and the presence of lesions with disability 
worsening, and results indicated a higher risk for disability worsening for cortical 
FD when adjusting for the presence of lesions and a trend for higher risk of disability 
worsening when adjusting for grey matter volume. To sum up, their results showed 
that cortical FD identified a subset of patients with brain damage who were at a 
higher risk of disease progression in short- to mid-term. The comparison of the risk 
based on cortical and grey matter fractal geometry yielded cutoffs associated with a 
higher risk of disability accumulation on several disability scales. Fractal geometry 
was thus pictured as a complementary measure that may represent a biomarker for 
disease monitoring and prognosis in patients with multiple sclerosis, even though 
multicenter validation studies in prospective cohorts will be required to confirm 
these findings.
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16.4.4 Parkinson’s Disease (PD) 

As outlined in Meregalli et al. [45], two main studies are worth noticing regarding 
the application of fractal analysis in PD. First, Li et al. [29] described decreased 
values of FD in patients suffering from the disease in different brain areas, such as 
left precentral and postcentral cortex, left superior frontal cortex, left caudal middle 
frontal cortex, bilateral superior parietal cortex, and right superior temporal cortex. 
Additionally, a lower FD value in the left postcentral cortex was associated with a 
longer duration of the disease under study. By contrast, Kubera et al. [26] did not 
discover changes in FD in association with PD, despite the significant thinning of 
the cortex. However, it should be considered that the number of samples analyzed 
in the latter work was low, what may have limited statistical power. 

16.4.5 Epilepsy 

In addition to the research described in Meregalli et al. [45], two recent studies 
have extended this field of research. Lu et al. [33] used two indicators, Sample 
Entropy (SampEn) and Higuchi’s Fractal Dimension (HFD) to identify epileptic 
signals characterized as being chaotic and nonlinear. By applying a support vector 
machine (SVM) classifier to these features, they were able to automatically classify 
the most EEG signal segments with an accuracy of 89.8%. Although preliminary, 
their results may provide theoretical guidance for the recognition or prediction of 
epileptic EEG signals in clinical practice. 

Moreover, Malekzadeh et al. [41] proposed a new method for early identification 
of epileptic seizures in EEG signals by applying nonlinear features based on FD 
and a deep learning model and using Bonn and Freiburg datasets to perform 
empirical analyses. Their findings yielded that the proposed methodology achieved 
an accuracy of 99.736% and 99.176% in the automatic diagnosis of epileptic 
seizures in EEG signals for the Bonn and Freiburg datasets, respectively. 

16.4.6 Autism Spectrum Disorder (ASD) 

In addition to the articles described in Esteban et al. [17], two recent studies have 
addressed the study of FD in autistic individuals. Zhao et al. [67] measured FD 
values of the right and left cerebellar cortex in male children with autism spectrum 
disorder (ASD) and typically developing peers, identifying a decrease in FD 
estimates in the right cerebellar cortex of autistic children. Moreover, they detected 
a significant positive correlation in the ASD group regarding the FD values and the 
difference between performance and verbal IQ. On the other hand, Radhakrishnan 
et al. [54] investigated EEG signals of ASD using Higuchi Fractal Dimension
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(HFD). These authors analyzed brain responses for auditory/visual stimuli in 
typically developing children and children with autism through EEG, attempting to 
characterize brain dynamics with HFD. Since one of the key parameters implicated 
in the computation of HFD is the time interval parameter “k,” most researchers 
arbitrarily fix the value of “k” in the range of all channels to estimate the degree of 
nonlinearity in an EEG signal. As a result of their research, they ultimately proposed 
an algorithm to estimate the optimal value of the time parameter for each channel. 
Their statistical analysis revealed that a difference of 30% was observed between 
autistic and TD children. 

16.4.7 Attention Deficit Hyperactivity Disorder (ADHD) 

Avelar et al. [4] hypothesized that the dynamics of exploratory movements may pre-
dict differences in the use of information by children with ADHD when compared 
to their typical development (TD) peers. Their findings supported this hypothesis, 
suggesting that ADHD patients exhibit deficits in dynamic touch that may be crucial 
for the organization of effective, task, and context-sensitive movement patterns, 
which manifested as reduced sensitivity to mechanical information supporting 
perception of object properties by wielding. Importantly, they reported signifi-
cant differences between children with and without ADHD related to temporal 
correlations (degree of fractality), particularly how the fractality of exploratory 
movements of the rod and hand moderated children’s emphasis on the first principal 
moment of inertia (I1). In TD children, lower hand fractality and greater rod 
fractality were related to increased emphasis on I1. By contrast, children with 
ADHD increased emphasis on I1 when the exploratory movement was characterized 
by greater hand fractality and lower rod fractality. Generally, their study suggested 
that this result may be taken to reflect differences in the coordination of multiscale 
processes involved in information sampling and use, although further research on 
this topic is required. On the other hand, Wang and Kamata [64] proposed a novel 
classification approach using 3D fractal dimension complexity map (FDCM) for 
ADHD automatic diagnosis. By calculating the Hausdorff fractal dimension of grey 
matter density data extracted from structural MRI information, they designed a 3-
dimensional convolutional neural network that allowed to estimate features from 
FDCM and discerning between ADHD children and typically developing peers. 
Additionally, Dawi et al. [7] analyzed the fractal dimension and sample entropy 
of EEG signals to investigate the changes in EEG signals’ complexity, concretely 
the decrease in attention and memory of patients with ADHD with respect to normal 
subjects while playing a serious game. Their findings exhibited a reduction in FD 
and sample entropy of EGG signals for ADHD individuals, which may reflect 
their lower attention. They concluded that the decrease in attention and memory 
in ADHD patients could be mapped on the reduction of complexity and memory of 
their EEG signals. Last, Sho’ouri [60] looked for differences in eye movements in 
patients with ADHD and healthy people while performing an attention-related task.
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The two groups were classified using the vector derived from the calculation of two 
features, approximate entropy (ApEn), and Petrosian’s fractal dimension (Pet’s FD) 
of electrooculogram (EOG) signals, along with support vector machine (SVM) and 
neural gas (NG) as another two classifiers. Their findings described that the values of 
both features were significantly lower in the ADHD group compared to the control 
group. Furthermore, the SVM classifier was more successful in separating the two 
groups than the NG. In conclusion, the reduction in ApEn and Pet’s values in the 
EOG signals of the ADHD patients group explained that their eye movements were 
slower than the control group and this difference was due to their attention deficit. 

16.4.8 Brain Tumors 

Di Ieva et al. [8, 9, 10, 11, 12, 16] showed that the fractal dimension is an objec-
tive parameter to characterize brain tumors on neuroimaging and histopathology, 
offering a new prognostic, diagnostic, and therapeutic biomarker. 

Moreover, fractal parameters can be used as morphometric and radiomic param-
eters to differentiate different types of brain tumors, as demonstrated by Jang et al. 
[21], Karsy et al. [23] and Petrujkic et al. [52]. 

Benson et al. [5] proposed a robust method for MR brain image classification 
based on FD. Their methodology assumed that brain tumors may increase the 
intracranial pressure (ICP), thus changing its normal structure and that those 
alterations could be effectively characterized by using fractal analysis. Their 
findings showed that the presence of tumors can cause significant changes in 
the fractal dimension of grey matter and white matter and used this variation in 
FD for the classification of MR brain images into two groups: with and without 
tumor. More recently, Sánchez and Martín [58] also explored morphological and 
fractal properties of brain tumors; they hypothesized that parameters extracted 
from the tumor interface fluctuations would allow for the characterization of the 
particular growth model, which could be relevant for an appropriate diagnosis and 
the correspondent therapeutic strategy. In this sense, they analyzed these fluctuations 
to determine generalized FD. Their results showed that tumor-interface FD, along 
with other parameters, may help to discriminate between gliomas and meningiomas 
or schwannomas. 

16.4.9 Vascular Disease 

A recent study conducted by Aminuddin et al. [2] explored the potential use of FD 
as a marker in cerebral small vessel disease (CSVD) and correlation with clinical 
sequalae of CSVD. Their findings revealed that asymptomatic CSVD subjects (from 
the incidental MRI finding of the presences of low white matter hyperintensity 
(WMH) burden) had significantly lower FD in comparison to the control subjects,
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suggesting that FD may serve as a promising vascular neuroimaging biomarker for 
asymptomatic CSVD subjects from the presence of low WMH burden, since FD 
is an index that measures the complexity of a self-similar and irregular structure, 
such as circle of Willis and its tributaries. Previously, Pantoni et al. [51] evaluated 
changes in FD between healthy subjects and patients with small vessel disease 
(SMD) and mild cognitive impairment (MCI). By calculating white and grey matter 
FD changes, the authors observed a decrease in whole-brain white matter FD in 
individuals suffering from SVD. Moreover, their findings also reported a positive 
correlation between FD values and cognitive performance, such that a reduction in 
white matter FD was related to worse cognitive outcomes. 

On the other hand, Lemmens et al. [27] conducted a systematic review of FD 
in the retinal vasculature to explore its role in neurodegeneration and stroke. The 
literature suggested that, overall, the central pathology is related to a reduction 
in FD as a measure of microvascular network complexity and considered this 
index as a promising noninvasive and cost-effective biomarker for the diagnosis 
of neurodegenerative and cerebrovascular disease. Similarly, Liew et al. [30] 
applied fractal analysis to estimate the branching complexity and density of the 
retinal vessels and its relationship with long-term stroke mortality. They reported 
that a decrease in retinal vascular FD, that is, a sparser vascular network, may 
be associated with cerebral tissue hypoxia and an increased risk of long-term 
stroke mortality. Nevertheless, further analyses should be conducted to validate FD 
performance as a neurodegeneration biomarker in clinical practice. 

Di Ieva et al. [13, 14] have introduced a novel methodology to characterize the 
geometrical complexity of the arteriovenous malformations’ (AVM) vascular nidus, 
proposing the nidus’ FD as a promising angioarchitectural parameter predicting the 
response to gamma knife radiosurgery. 

16.5 Conclusion 

Overall, evidence is accumulating for decreases in FD across a variety of neuropsy-
chiatric disorders, including AD, FTD, PD, and MS, and many other neurological 
diseases. It is becoming increasingly clear that fractal analysis in the field of 
neurodegenerative disorders opens the possibility of detecting structural alterations 
in the early stages of the disease, which highlights FD as a potential diagnostic 
and prognostic tool in clinical practice. In addition, FD alterations were also 
found to be linked to clinical worsening in different neurological conditions. 
Thus, further research is warranted to evaluate the association between topological 
complexity and specific clinical parameters and to assess the reliability of the 
different methodologies employed to calculate FD, with the objective of specifying 
the most appropriate techniques for the respective research questions. In conclusion, 
this overview shows that fractal analysis represents a valuable tool to describe brain 
complexity in healthy populations and to identify morphological alterations related 
to developmental or pathological conditions. Nonetheless, the present chapter also
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revealed a lack of longitudinal studies in the existing FD literature, which will be 
of great relevance to better understand the prognostic role of fractal analysis in 
different neurological conditions and disease stages. 
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